Skip to main content
Log in

Power regulation of kinematic control inputs for forward flying Drosophila

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The choices of insect wing kinematic programs is not well understood, particularly the mechanism by which an insect selects a distortion to achieve flight control. A methodology to evaluate prospective kinematic control inputs is presented based on the reachable states when control actuation was constrained to a unit of power. The method implements a computationally-derived reduced order model of the insect’s flight dynamics combined with calculation of power requirement. Four kinematic inputs are evaluated based on this criterion for a Drosophila size insect in forward flight. Stroke bias is shown to be the dominant control input using this power normalized evaluation measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor, G., Thomas, A.: Dynamic flight stability in the desert locust Schistocerca gregaria. The Journal of Experimental Biology 206, 2803–2829 (2003)

    Article  Google Scholar 

  2. Dickson, W., Polidoro, P., Tanner, M., et al.: A linear systems analysis of the yaw dynamics of a dynamically scaled insect model. Journal of Experimental Biology 213, 3047–3061 (2010)

    Article  Google Scholar 

  3. Hesselberg, T., Lehman, F.: Turning behavior depends on frictional damping in the fruit-fly drosophila. Journal of Experimental Biology 210, 4319–4334 (2007)

    Article  Google Scholar 

  4. Sun, M., Xiong, Y.: Dynamic flight stability of a hovering bumblebee. The Journal of Experimental Biology 208, 447–459 (2005)

    Article  Google Scholar 

  5. Sun, M., Wang, J., Xiong, Y.: Dynamic flight stability of hovering insects. Acta Mechanica Sinica 23, 231–246 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gao, N., Aono, H., Liu, H.: Perturbation analysis of 6dof flight dynamics and passive dynamic stability of hovering fruit fly Drosophila Melanogaster. Journal of Theoretical Biology 270, 98–111 (2011)

    Article  Google Scholar 

  7. Zhang, Y.L., Wu, J.H., Sun, M.: Lateral dynamic flight stability of hovering insects: Theory vs. numerical simulation. Acta Mechanica Sinica 28, 221–231 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Huang, H., Sun, M.: Forward flight of a model butterfly: Simulation by equations of motion coupled with the navierstokes equations. Acta Mechanica Sinica 28, 1590–1601 (2012)

    Article  MathSciNet  Google Scholar 

  9. Faruque I., Humbert, J.S.: Dipteran insect flight dynamics. Part 1: Longitudinal motion about hover. The Journal of Theoretical Biology 264, 538–552 (2010)

    Article  MathSciNet  Google Scholar 

  10. Sun, M.: Insect flight dynamics: Stability and control. Rev. Mod. Phys. 86, 615–646 (2014)

    Article  Google Scholar 

  11. Lehmann, F., Dickinson, M.H.: The control of wing kinematics and flight forces in fruit flies (drosophila spp.). The Journal of Experimental Biology 201, 385–401 (1998)

    Google Scholar 

  12. Zhang, Y.L., Sun, M.: Control for small-speed lateral flight in a model insect. Bioinspiration & Biomechanics 6, 036003 (2011)

    Article  Google Scholar 

  13. Humbert, J.S., Faruque, I.A.: Analysis of insectinspired wingstroke kinematic perturbations for longitudinal control. Journal of Guidance, Control, and Dynamics 34, 618–623 (2011)

    Article  Google Scholar 

  14. Ellington, C.P.: The aerodynamics of hovering insect flight vi: Lift and power requirements. Philosophical Transactions of the Royal Society of London 305Series B, 115–144 (1984)

    Article  Google Scholar 

  15. Berman, G.J., Wang, Z.: Energy-minimizing kinematics in hovering insect flight. Journal of Fluid Mechanics 582, 153–168 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stanford, B., Beran, P., Snyder, R., et al.: Stability and power optimality in time-periodic flapping wing structures. Journal of Fluids and Structures 38, 238–254 (2013)

    Article  Google Scholar 

  17. Dickinson, M.H., Lighton, J.R.: Muscle efficiency and elastic storage in the flight motor of drosophila. Science 268, 87–90 (1995)

    Article  Google Scholar 

  18. Gratzel, C., Nelson, B., Fry, S.: Frequency response of lift control in Drosophila. Journal of the Royal Society Interface 7, 1603–1616 (2010)

    Article  Google Scholar 

  19. Wu, J.H., Sun, M.: Floquet stability analysis of the longitudinal dynamics of two hovering model insects. Journal of The Royal Society Interface 9, 2033–2046 (2012)

    Article  Google Scholar 

  20. Kostreski, N.I.: Automated kinematic extraction of wing and body motions of free flying diptera, [Master’s Thesis]. University of Maryland, USA (2012)

    Google Scholar 

  21. Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of free-flight-maneuvers in drosophila. Science 300, 495–498 (2003)

    Article  Google Scholar 

  22. Bush, B., Baeder, J.: Force production mechanisms of a flapping mav wing. In: AHS International Specialists Conference on Aeromechanics, San Fransisco, CA, January 23–25 (2008)

    Google Scholar 

  23. Bush, B., MacFarlane, K., Baeder, J., et al.: Development of immersed boundary code with application to mav stability analysis. In: 27th Army Science Conference, Orlando, FL, November 29–December 2 (2010)

    Google Scholar 

  24. Wu, J.H., Sun, M.: Control for going from hovering to small speed flight of a model insect. ActaMechanica Sinica 25, 295–302 (2009)

    Article  MATH  Google Scholar 

  25. Cheng, B., Deng, X.: Near-hover dynamics and attitude stabilization of an insect model. In American Control Conference (ACC), Baltimore, 39–44 (2010)

    Google Scholar 

  26. Zhang, Y.L., Sun, M.: Dynamic flight stability of a hovering model insect: lateral motion. Acta Mechanica Sinica 26, 175–190 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lehmann, F., Dickinson, M.H.: The changes in power requirements and muscle efficiency during elevated force production in the fruit fly drosophila melanogaster. Journal of Experimental Biology 200, 1133–1143 (1997)

    Google Scholar 

  28. Zhou, K., Salomon, G., Wu, E.: Balanced realization and model reduction for unstable systems. International Journal of Robust and Nonlinear Control 9, 183–198 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gardner, R.C., Humbert, J.S.: Comparative framework for maneuverability and gust tolerance of microhelicopters. Journal of Aircraft 51, 1546–1553 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth MacFarlane.

Additional information

The project was supported by the Micro Autonomous Systems and Technology (MAST) CTA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacFarlane, K., Faruque, I. & Sean Humbert, J. Power regulation of kinematic control inputs for forward flying Drosophila . Acta Mech Sin 30, 809–818 (2014). https://doi.org/10.1007/s10409-014-0094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-014-0094-x

Keywords

Navigation