Skip to main content
Log in

Effective dispersion and separation resolution in continuous particle fractionation

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Theoretical models and experiments suggest that the transport of suspended particles in microfluidics-based sorting devices can be modeled by a two-dimensional effective advection-diffusion process characterized by constant average velocity, \(\mathbf {W}\), and a typically anisotropic dispersion tensor, \(\mathbb {D}\), whose principal axes are slanted with respect to the direction of the effective velocity. We derive a closed-form expression connecting the effective transport parameters to separation resolution in continuous particle fractionation. We show that the variance of the steady-state particle concentration profile at an arbitrary cross-section of the device depends upon a scalar dispersion parameter, \(D_\mathrm{eff}\), which is primarily controlled by the projection of the dispersion tensor onto the direction orthogonal to \(\mathbf {W}\). Numerical simulations of particle transport in a Deterministic Lateral Displacement device, here used as a benchmark to illustrate the practical use of the effective transport approach, indicate that sustained dispersion regimes typically arise, where the dispersion parameter \(\mathcal {D}_\mathrm{eff}\) can be orders of magnitude larger than the bare particle diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(C({\xi }_1,{\xi }_2,t)\) :

Effective particle number density function in the \({\xi }_1 {\xi }_2\) frame (see Fig. 8)

\(C_{\infty }({\xi }_1,{\xi }_2)\) :

Steady-state effective particle number density in the \({\xi }_1 {\xi }_2\) frame

\(\mathcal {D}_{\alpha }, \mathcal {D}\) :

Diffusion coefficient of species \({\alpha }\)

\({D}_\mathrm{eff}\) :

Dispersion coefficient for the continuous separation process

\(D_1\), \(D_2\) :

Dimensionless dispersion coefficients (principal values of \(\mathbb {D}\))

\(\mathrm{Pe}=U{\ell }/{\mathcal {D}}\) :

Particle Peclet number

\(R(\overline{x})\) :

Resolution of a binary mixture at downstream distance \(\overline{x}\) from the inlet

\(Y(\overline{x})\) :

Average y crossing coordinate at an exit section at downstream distance \(\overline{x}\) from the inlet

\(\mathbf {W}_{\alpha }\) :

Average (vector) velocity of species \({\alpha }\)

\({W}_{{\xi }_i}\) :

Components of \(\mathbf {W}\) in the \({\xi }_1{\xi }_2\) coordinate system

\({\Phi }_{\alpha }(x,y,t)\) :

Effective particle concentration n the global coordinate system xy

\({\Phi }_{\infty }(x,y)\) :

Steady-state effective particle concentration in the global coordinate system xy

\({\Phi }_{\nu }(\overline{x},y)\) :

Normalized cross-sectional steady-state distribution of particle crossing coordinate at downstream distance \(\overline{x}\) from the inlet

\({\sigma }(\overline{x},y)\) :

Variance of \({\Phi }_{\nu }(\overline{x},y)\) profile

\({\Theta }_\mathrm{D}\) :

Angle between the eigendirection \(\mathbf {e}_\mathrm{D}^{(1)}\) of \(\mathbb {D}\) and the average velocity of the carrier flow (see Fig. 1b)

\({\Theta }^{\prime }_{\mathbf {W}}\) :

Angle between the eigendirection \(\mathbf {e}_\mathrm{D}^{(1)}\) of \(\mathbb {D}\) and the average particle velocity (see Fig. 1b)

\(\mathbb {D}\) :

Effective dispersion tensor

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Dover Publications, New York

    MATH  Google Scholar 

  • Autebert J, Coudert B, Bidard F-C, Pierga J-Y, Descroix S, Malaquin L, Viovy J-L (2012) Microfluidic: an innovative tool for efficient cell sorting. Methods 57:297–307

    Article  Google Scholar 

  • Benke M, Shapiro E, Drikakis D (2011) Mechanical behaviour of DNA molecules-elasticity and migration. Med Eng Phys 33:883–886

    Article  Google Scholar 

  • Benke M, Shapiro E, Drikakis D (2013) On mesoscale modelling of dsDNA molecules in fluid flow. J Comput Theor Nanosci 10:697–704

    Article  Google Scholar 

  • Bogunovic L, Eichhorn R, Regtmeier J, Anselmetti D, Reimann P (2012) Particle sorting by a structured microfluidic ratchet device with tunable selectivity: theory and experiment. Soft Matter 8:3900–3907

    Article  Google Scholar 

  • Brenner H, Edwards D (1993) Macrotransport processes; Butterworth-Heinemann Series in Chemical Engineering

  • Bruus H (2012) Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12:1014–1021

    Article  Google Scholar 

  • Cerbelli S (2013) Critical dispersion of advecting-diffusing tracers in periodic landscapes of hard-wall symmetric potentials. Phys Rev E 87(6):060102

    Article  Google Scholar 

  • Cerbelli S (2012) Separation of polydisperse particle mixtures by deterministic lateral displacement. The impact of particle diffusivity on separation efficiency. Asia Pac J Chem Eng 7:S356–S371

    Article  Google Scholar 

  • Chen S (2013) Driven transport of particles in 3D ordered porous media. J Chem Phys 139(7):074904

    Article  Google Scholar 

  • Collins D, Alan T, Neild A (2014) Particle separation using virtual deterministic lateral displacement (vDLD). Lab Chip 14:1595–1603

    Article  Google Scholar 

  • Cerbelli S, Giona M, Garofalo F (2013) Quantifying dispersion of finite-sized particles in deterministic lateral displacement microflow separators through Brenner’s macrotransport paradigm. Microfluid Nanofluid 15:431–449

    Article  Google Scholar 

  • Devendra R, Drazer G (2012) Gravity driven deterministic lateral displacement for particle separation in microfluidic devices. Anal Chem 84:10621–10627

    Article  Google Scholar 

  • Dorfman K, King S, Olson D, Thomas J, Tree D (2013) Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis, and DNA stretching. Chem Rev 113:2584–2667

    Article  Google Scholar 

  • Frechette J, Drazer G (2009) Directional locking and deterministic separation in periodic arrays. J Fluid Mech 627:379–401

    Article  MATH  Google Scholar 

  • Ghosh P, Hnggi P, Marchesoni F, Martens S, Nori F, Schimansky-Geier L, Schmid G (2012) Driven Brownian transport through arrays of symmetric obstacles. Phys Rev E 85:011101

    Article  Google Scholar 

  • Giddings JC (1991) Unified separation science. Wiley, New York

    Google Scholar 

  • Gleeson J, Sancho J, Lacasta A, Lindenber K (2006) Analytical approach to sorting in periodic and random potentials. Phys Rev E 73:041102

    Article  MathSciNet  Google Scholar 

  • Gradshteyn I, Ryzhik I (2007) Table of integrals, series, and products. Academic Press, San Diego

    MATH  Google Scholar 

  • Green J, Radisic M, Murthy S (2009) Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal Chem 81:9178–9182

    Article  Google Scholar 

  • Gross M, Krüger T, Varnik F (2014) Fluctuations and diffusion in sheared athermal suspensions of deformable particles. EPL (Europhysics Letters) 108:68006

    Article  Google Scholar 

  • Han K-H, Frazier A (2008) Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Lab Chip 8:1079–1086

    Article  Google Scholar 

  • He K, Babaye Khorasani F, Retterer S, Thomas D, Conrad J, Krishnamoorti R (2013) Diffusive dynamics of nanoparticles in arrays of nanoposts. ACS Nano 7:5122–5130

    Article  Google Scholar 

  • He K, Retterer S, Srijanto B, Conrad J, Krishnamoorti R (2014) Transport and dispersion of nanoparticles in periodic nanopost arrays. ACS Nano 8:4221–4227

    Article  Google Scholar 

  • Heller M, Bruus H (2008) A theoretical analysis of the resolution due to diffusion and size dispersion of particles in deterministic lateral displacement devices. J Micromech Microeng 18:075030

    Article  Google Scholar 

  • Hnggi P, Marchesoni F (2009) Artificial Brownian motors: controlling transport on the nanoscale. Rev Mod Phys 81:387–442

    Article  Google Scholar 

  • Huang L, Cox E, Austin R, Sturm J (2003) Tilted Brownian ratchet for DNA analysis. Anal Chem 75:6963–6967

    Article  Google Scholar 

  • Huang L, Cox E, Austin R, Sturm J (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990

    Article  Google Scholar 

  • Inglis D (2009) Efficient microfluidic particle separation arrays. Appl Phys Lett 94(1):013510

    Article  Google Scholar 

  • Inglis D, Davis J, Austin R, Sturm J (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–658

    Article  Google Scholar 

  • Inglis D, Davis J, Zieziulewicz T, Lawrence D, Austin R, Sturm J (2008) Determining blood cell size using microfluidic hydrodynamics. J Immunol Methods 329:151–156

    Article  Google Scholar 

  • Jain A, Posner J (2008) Particle dispersion and separation resolution of pinched flow fractionation. Anal Chem 80:1641–1648

    Article  Google Scholar 

  • Jonas A, Zemanek P (2008) Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29:4813–4851

    Article  Google Scholar 

  • Kirchner J, Hasselbrink E, Jr (2005) Dispersion of solute by electrokinetic flow through post arrays and wavy-walled channels. Anal Chem 77:1140–1146

    Article  Google Scholar 

  • Kralj J, Lis M, Schmidt M, Jensen K (2006) Continuous dielectrophoretic size-based particle sorting. Anal Chem 78:5019–5025

    Article  Google Scholar 

  • Krüger T, Holmes D, Coveney P (2014) Deformability-based red blood cell separation in deterministic lateral displacement devices: a simulation study. Biomicrofluidics 8(5):054114

    Article  Google Scholar 

  • Kulrattanarak T, van der Sman R, Schroëën C, Boom R (2008) Classification and evaluation of microfluidic devices for continuous suspension fractionation. Adv Colloid Interface Sci 142:53–66

    Article  Google Scholar 

  • Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39:1203–1217

    Article  Google Scholar 

  • Ling S, Lam Y, Chian K (2012) Continuous cell separation using dielectrophoresis through asymmetric and periodic microelectrode array. Anal Chem 84:6463–6470

    Article  Google Scholar 

  • Long B, Heller M, Beech J, Linke H, Bruus H, Tegenfeldt J (2008) Multidirectional sorting modes in deterministic lateral displacement devices. Phys Rev E 78:046304

    Article  Google Scholar 

  • Loutherback K, Chou K, Newman J, Puchalla J, Austin R, Sturm J (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluid 9:1143–1149

    Article  Google Scholar 

  • Loutherback K, Puchalla J, Austin R, Sturm J (2009) Deterministic microfluidic ratchet. Phys Rev Lett 102:045301

    Article  Google Scholar 

  • MacDonald M, Spalding G, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426:421–424

    Article  Google Scholar 

  • Maxey M, Riley J (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:883–889

    Article  MATH  Google Scholar 

  • Polyanin A, Manzhirov A (2007) Handbook of mathematics for scientists and engineers. Chapman & Hall/CRC, Boca Raton, FL

    MATH  Google Scholar 

  • Raynal F, Beuf A, Carrière P (2013) Numerical modeling of DNA-chip hybridization with chaotic advection. Biomicrofluidics, 7(3):034107

    Article  Google Scholar 

  • Sia S, Whitesides G (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576

    Article  Google Scholar 

  • Speer D, Eichhorn R, Reimann P (2012) Anisotropic diffusion in square lattice potentials: giant enhancement and control. EPL 97:60004

  • Zhang C, Khoshmanesh K, Mitchell A, Kalantar-Zadeh K (2010) Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem 396:401–420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Cerbelli.

Appendix

Appendix

In what follows, we prove the relationship

$$\begin{aligned} D_\mathrm{eff}=\frac{D_1 \, {\sin }^2{\Theta }^{\prime }_{\mathbf {W}}+ D_2 \, {\cos }^2{\Theta }^{\prime }_{\mathbf {W}}}{ |{\cos }^3 \left( {\Theta }^{\prime }_{\mathbf {W}} + {\Theta }_D \right) |} = \frac{D_{\perp }}{ |{\cos }^3 {\Theta }_{\mathbf {W}} |} \;, \end{aligned}$$
(21)

expressed by Eq. (14) in the main article. Figure 8 depicts the global coordinate axes together with the \({\xi }_1 {\xi }_2\) coordinate system that is collinear with the principal axes of the effective diffusion tensor \(\mathbb {D}\).

Fig. 8
figure 8

Global versus intrinsic coordinate system

With reference to this figure, consider the asymptotic approximation to the steady-state particle concentration field expressed by Eq. (13) of the main article, which we report below

$$\begin{aligned} C_{\infty }({\xi }_1,{\xi }_2) \simeq \frac{A}{\sqrt{\pi }} \frac{\exp \left\{ {\beta }({\xi }_1,{\xi }_2)-h({\xi }_1,{\xi }_2) \right\} }{\sqrt{h({\xi }_1,{\xi }_2)}}, \end{aligned}$$
(22)

Our approach to prove the result in Eq. (21) is to determine the structure of the one-dimensional cross-sectional profile \(C_{\infty }({\xi }_1(u),{\xi }_2(u))\) where u is a local coordinate system with origin at the point \(\overline{P}= \big ( \overline{x}, \, \tan ( {\Theta }^{\prime }_{\mathbf {w}} + {\Theta }_D ) \, \overline{x} \big )\) at the intersection between the straight line r and the cross-section at \(\overline{x}\) [compare Fig. S8 and Fig. 1 of the main article]. As a first observation, note that the argument, say \(g({\xi }_1,{\xi }_2),\)

$$\begin{aligned} g({\xi }_1,{\xi }_2)= {\beta } ({\xi }_1,{\xi }_2) - h ({\xi }_1,{\xi }_2), \end{aligned}$$
(23)

of the exponential function at the r.h.s of Eq. (22) vanishes identically onto the r-line, together with its first \({\xi }_1\)- and \({\xi }_2\)-derivatives, \({\partial }_{{\xi }_1}g,\) and \({\partial }_{{\xi }_2}g.\) Thus, if one expands in Taylor series \(G(u)=g \big ( {\xi }_1(u),{\xi }_2(u) \big )\) as a function of u about the point \(\overline{P}\) one gets

$$\begin{aligned} G(u)= G(0)+G^{\prime }(u) \big |_{0} \, u + \frac{1}{2} G^{\prime \prime }(u) \big |_{0} \, u^2 + o(u^3)= \frac{1}{2} G^{\prime \prime }(u) \big |_{0} \, u^2 \end{aligned}$$
(24)

Since \(u=0\) corresponds to the point \(\overline{P}\) one gets that \(G(0)=0,\) and \(G^{\prime }(u) \big |_{0}= {\nabla }g \cdot \mathbf e _u=\mathbf {0} \cdot \mathbf e _u=0,\) where \({\nabla }=({\partial }_{{\xi }_1}, {\partial }_{{\xi }_2} )\) and where \(\mathbf e _u\) is a unit vector parallel the cross-section. Therefore one obtains that onto the device cross-section the one-dimensional concentration profile ca be approximated as

$$\begin{aligned} C_{\infty } \big ( {\xi }_1(u),{\xi }_2(u) \big ) \simeq \frac{A}{{\sqrt{ \pi \, h \big ( ({\xi }_1(u),{\xi }_2(u) \big ) }}} {\exp \left\{ \frac{G^{\prime \prime }(u) \big |_{0} \, u^2}{2} \right\} } \; \end{aligned}$$
(25)

It can be observed that at large \(\overline{x}\) values, the denominator at the r.h.s. of Eq. (25) is nearly constant in the range where the exponential factor is significantly different from zero. This implies, that, within this approximation, the one-dimensional profile in Eq. (25) possesses a Gaussian structure, with a variance \({\sigma }\) given by

$$\begin{aligned} {\sigma }^2=- \frac{1}{ G^{\prime \prime }(u) \big |_{0} } \end{aligned}$$
(26)

Therefore, the profile variance \({\sigma }\) at \(\overline{x}\) can be estimated from the second derivative of the the function G(u) at \(u=0,\) which corresponds to \(\overline{P}.\) One obtains

$$\begin{aligned} G^{\prime \prime }(u) \big |_{0} = \frac{{\partial }^2g}{{\partial }{\xi }^2_1 } \left( \frac{d{\xi }_1}{du} \right) ^2 + \frac{{\partial }^2 g}{{\partial }{\xi }^2_2} \left( \frac{d{\xi }_2}{du} \right) ^2 +2 \, \frac{{\partial }^2 g}{{\partial }{\xi }_1{\partial }{\xi }_2} \left( \frac{d{\xi }_1}{du} \right) \left( \frac{d{\xi }_2}{du} \right) \end{aligned}$$
(27)

Note that since \({\beta }({\xi }_1,{\xi }_2)\) in Eq. (23) is a linear function of its arguments, only the second derivatives of \(h({\xi }_1,{\xi }_2)\) contribute to the partial derivatives of the g function in Eq. (27). The explicit computation of the derivatives at the r.h.s. of Eq. (27) yields, after simple algebraic manipulations,

$$\begin{aligned} G^{\prime \prime }(u) \big |_{0}= h^{\prime \prime }(u) \big |_{0}= \frac{ 1}{2 \, D_{\perp } {\overline{x}}} \, |\cos \big ( {\Theta }_{\mathbf {w}} \big ) |\, (\mathbf {e}_u \cdot \mathbf {e}_{\mathbf {W}} )^2= \frac{|\cos \big ( {\Theta }_{\mathbf {w}} \big ) |^3}{2 \, D_{\perp } {\overline{x}}} \end{aligned}$$
(28)

where \(D_{\perp }= D_1 \, {\sin }^2{\Theta }^{\prime }_{\mathbf {W}}+ D_2 \, {\cos }^2{\Theta }^{\prime }_{\mathbf {W}},\) and where \(\mathbf {e}_{\mathbf {W}}\) and \(\mathbf {e}_{x}\) are unit vectors parallel to \(\mathbf {W}\) and to the x axis, respectively. From Eq. (26) one obtains

$$\begin{aligned} {\sigma }^2= 2 \, D_\mathrm{eff} \, \overline{x}= \frac{2 \, D_{\perp } {\overline{x}}}{|\cos \big ( {\Theta }_{\mathbf {w}} \big ) |^3} \end{aligned}$$
(29)

which is equivalent to Eq. (21).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerbelli, S., Garofalo, F. & Giona, M. Effective dispersion and separation resolution in continuous particle fractionation. Microfluid Nanofluid 19, 1035–1046 (2015). https://doi.org/10.1007/s10404-015-1618-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1618-9

Keywords

Navigation