Skip to main content
Log in

An analytical model for flow rectification of a microdiffuser driven by an oscillating source

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this study, we employ the similarity transformation and the AC-circuit analogy to investigate the flow rectification property of a microdiffuser. Driven by an oscillating source, the transient two-dimensional radial flow of viscous fluid in a planar microdiffuser, which consists in a wedge-shaped domain bounded by two circular arcs, is solved. The ratio of flow impedances is determined to evaluate the performance of the flow rectification. By gauging the leverage between viscous and unsteady effects, we discuss the influences of the half angle, the Reynolds number, the excitation frequency, and the ratio of inlet to outlet radii in flow directing properties of the microdiffuser. We find that net flow in the expansion direction only occurs when the product of the half angle and the Reynolds number is small and the Womersley number is low. Moreover, the reversal Womersley number, at which preference of flowing direction switches, decreases with increasing the product of half angle and the Reynolds number or reducing the ratio of inlet to outlet radii. We find that a wider half angle, stronger oscillation, higher frequency, broader inlet, and longer microdiffuser all contribute to the augmentation of the transient inertia and lead to the promotion of converging flow. The specific goal of this study is to provide the means to manipulate the flow rectification effect of a microdiffuser by varying its geometry or the driving conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

f :

f(θ, t) = −[F(θ, t) + 1]/3

F :

Dimensionless velocity [F(θ, t) = ur/2ν]

h :

Radius of microdiffuser inlet (μm)

H f :

Hydraulic inductance (Pa s2 m−2)

p :

Pressure (Pa)

Δp :

Pressure drop across microdiffuser (Pa)

p 1 :

p 1(r, t) = p(r, θ, t) − 4rν2 F/r 2 (Pa)

(θ):

Weierstrassian elliptic function

Q :

Instantaneous flow rate per unit depth of microdiffuser (m2 s−1)

r :

Radial direction in the polar coordinate

R :

Radius of microdiffuser outlet (μm)

Re :

Reynolds number (Re = 2αF 0)

R f :

Flow resistance (Pa s m−2)

t :

Time (s)

u :

Velocity component in the radial direction

Wo :

Womersley number [Wo = αh(ω/ν)1/2]

Z f :

Flow impedance (Pa s m−2)

α :

Half angle of microdiffuser (°)

η :

Ratio of flow impedance (η = Z f,o/Z f,i)

ν :

Kinematic viscosity of fluid (m2 s−1)

θ :

Angular direction in the polar coordinate (°)

ρ :

Density of fluid (kg m−3)

ω :

Excitation frequency (rad s−1)

0:

Centerline of microdiffuser (θ = 0)

i:

Inflow/expansion flow

o:

Outflow/contraction flow

opt:

Optimal

r:

Reversal

References

  • Andersson H, van der Wijngaart W, Nilsson P, Enoksson P, Stemme G (2001) A valve-less diffuser micropump for microfluidic analytical systems. Sens Actuators B: Chem 72:259–265

    Article  Google Scholar 

  • Butcher JC (1987) The numerical analysis of ordinary differential equations: Runge–Kutta and general linear methods. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Dentry MB, Friend JR, Yeo LY (2014) Continuous flow actuation between external reservoirs in small-scale devices driven by surface acoustic waves. Lab Chip 14:750–758  

    Article  Google Scholar 

  • Duryodhan VS, Singh SG, Agrawal A (2013) Liquid flow through a diverging microchannel. Microfluid Nanofluid 14:53–67

    Article  Google Scholar 

  • Eames I, Azarbadegan A, Zangeneh M (2009) Analytical model of valveless micropumps. J Microelectromech Syst 18:878–883

    Article  Google Scholar 

  • Eijkel JCT, van den Berg A (2005) Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluid 1:249–267

  • Fraenkel LE (1962) Laminar flow in symmetrical channels with slightly curved walls. I. On the Jeffery–Hamel solutions for flow between plane walls. Proc R Soc Lond A 267:119–138

    Article  MATH  MathSciNet  Google Scholar 

  • Gaver DP, Grotberg JB (1986) An experimental investigation of oscillating flow in a tapered channel. J Fluid Mech 172:47–61

    Article  Google Scholar 

  • Gerlach T (1998) Microdiffusers as dynamic passive valves for micropump applications. Sens Actuators A 69:181–191

    Article  Google Scholar 

  • Gerlach T, Wurmus H (1995) Working principle and performance of the dynamic micropump. Sens Actuators A 50:135–140

    Article  Google Scholar 

  • Grotberg JB (1984) Volume-cycled oscillatory flow in a tapered channel. J Fluid Mech 141:249–264

    Article  MATH  Google Scholar 

  • Heschel M, Mullenborn M, Bouwstra S (1997) Fabrication and characterization of truly 3-D diffuser/nozzle microstructures in silicon. J Microelectromech Syst 6:41–47

    Article  Google Scholar 

  • Japikse D, Baines NC (1998) Diffuser design technology. Concepts ETI Inc, White River Junction

    Google Scholar 

  • Jeffery GB (1915) The two-dimensional steady motion of a viscous fluid. Philos Mag Ser 6(29):455–465

    Article  Google Scholar 

  • Jiang XN, Zhou ZY, Li Y, Yang Y, Huang XY, Liu CY (1997) Experiments and analysis for micro-nozzle/diffuser flow and micro valveless pumps. In: International conference on solid-state sensors and actuators, Chicago

  • King CV, Smith BL (2011) Oscillating flow in a 2-D diffuser. Exp Fluids 51:1577–1590

    Article  Google Scholar 

  • Kofoed JP, Frigaard P, Friis-Madsen E, Sørensen HC (2006) Prototype testing of the wave energy converter wave dragon. Renew Energy 31:181–189

    Article  Google Scholar 

  • Kovacs GT (1998) Micromachined transducers sourcebook. McGraw-Hill, New York

    Google Scholar 

  • Lee Y-H, Kang TG, Cho Y-H (2000) Characterization of bi-directionally oscillating dynamic flow and frequency-dependent rectification performance of microdiffusers. In: 13th Annual international conference on micro electro mechanical systems. Miyazaki, Japan, pp 403–408

  • Lin Y-N, Chen P-C, Wu R-G, Pan L-C, Tseng F-G (2013) Micro diffuser-type movement inversion sorter for high-efficient sperm sorting. In: Proceedings of 8th IEEE international conference on nano/micro engineered and molecular systems (NEMS)

  • Loudon C, Tordesillas A (1998) The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow. J Theor Biol 191:63–78

    Article  Google Scholar 

  • McMillan OJ, Johnston JP (1973) Performance of low-aspect-ratio diffusers with fully developed turbulent inlet flows part I—some experimental results. J Fluids Eng 95:385–392

    Article  Google Scholar 

  • Mehlum E (1986) Tapchan. In: Evans D, Falcão AO (eds) Hydrodynamics of ocean wave-energy utilization. International union of theoretical and applied mechanics. Springer, Berlin, pp 51–55

    Chapter  Google Scholar 

  • Morris CJ, Forster FK (2004) Oscillatory flow in microchannel—comparison of exact and approximate impedance models with experiments. Exp Fluids 36:928–937

    Article  Google Scholar 

  • Nabavi M, Mongeau L (2009) Numerical analysis of high frequency pulsating flows through a diffuser-nozzle element in valveless acoustic micropumps. Microfluid Nanofluid 7:669–681

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1995) A valve-less planar fluid pump with two pump chambers. Sens Actuators A 47:549–556

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1996) Diffuser-element design investigation for valve-less pumps. Sens Actuators A 57:137–143

    Article  Google Scholar 

  • Olsson A, Enoksson P, Stemme G, Stemme E (1997) Micromachined flat-walled valveless diffuser pumps. J Microelectromech Syst 6:161–166

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (1999) A numerical design study of the valveless diffuser pump using a lumped-mass model. J Micromech Microeng 9:34–44

    Article  Google Scholar 

  • Olsson A, Stemme G, Stemme E (2000) Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps. Sens Actuators A 84:165–175

    Article  Google Scholar 

  • Reneau LR, Johjston JP, Kline SJ (1967) Performance and design of straight, two-dimensional diffusers. J Fluids Eng 89:141–150

    Google Scholar 

  • Rosenhead L (1940) The steady two-dimensional radial flow of viscous fluid between two inclined plane walls. Proc R Soc Lond A 175:436–467

    Article  Google Scholar 

  • Schachenmann AA, Rockwell DO (1976) Oscillating turbulent flow in a conical diffuser. J Fluids Eng 98:695–701

    Article  Google Scholar 

  • Singhal V, Garimella SV, Murthy JY (2004) Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps. Sens Actuators A 113:226–235

    Article  Google Scholar 

  • Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid pump. Sens Actuators A 39:159–167

    Article  Google Scholar 

  • Stenning AH, Schachenmann AA (1973) Oscillatory flow phenomena in diffusers at low Reynolds numbers. J Fluids Eng 95:401–407

    Article  Google Scholar 

  • Su G, Pidaparti RM (2010) Drug particle delivery investigation through a valveless micropump. J Microelectromech Syst 19:1390–1399

    Article  Google Scholar 

  • Sun C-L, Huang KH (2006) Numerical characterization of the flow rectification of dynamic microdiffusers. J Micromech Microeng 16:1331–1339

    Article  Google Scholar 

  • Sun C-L, Yang ZH (2007) Effects of the half angle on the flow rectification of a microdiffuser. J Micromech Microeng 17:2031–2038

    Article  Google Scholar 

  • Sun C-L, Lee H-C, Kao R-X (2012) Diagnosis of oscillating pressure-driven flow in a microdiffuser using micro-PIV. Exp Fluids 52:23–35

    Article  Google Scholar 

  • Tanaka S, Tsukamoto H, Miyazaki K (2008) Development of diffuser/nozzle based valveless micropump. J Fluid Sci Technol 3:999–1007

    Article  Google Scholar 

  • Tsui Y-Y, Lu S-L (2008) Evaluation of the performance of a valveless micropump by CFD and lumped-system analyses. Sens Actuators A 148:138–148

    Article  Google Scholar 

  • Verma P, Chatterjee D (2011) Parametric characterization of piezoelectric valveless micropump. Microsyst Technol 17:1727–1737

    Article  Google Scholar 

  • Wang A-B, Hsieh M-C (2012) Unveiling the missing transport mechanism inside the valveless micropump. Lab Chip 12:3024–3027

    Article  Google Scholar 

  • Wang Y-C, Hsu J-C, Kuo P-C, Lee Y-C (2009) Loss characteristics and flow rectification property of diffuser valves for micropump applications. Int J Heat Mass Transf 52:328–336

    Article  MATH  Google Scholar 

  • Wang Y-C, Chen H-Y, Hsiao Y-Y (2011) Experimental study of the flow rectification performance of conical diffuser valves. Acta Mech 219:15–27

    Article  MATH  Google Scholar 

  • White FM (2006) Viscous fluid flow, 3rd edn. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Graduate Student Fellowship of the Department of Mechanical Engineering at National Taiwan University (Sung Tsang) and the Ministry of Science and Technology of Taiwan under Grant Number NSC 101-2221-E-002-064-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-li Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Cl., Tsang, S. & Huang, HY. An analytical model for flow rectification of a microdiffuser driven by an oscillating source. Microfluid Nanofluid 18, 979–993 (2015). https://doi.org/10.1007/s10404-014-1487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1487-7

Keywords

Navigation