Skip to main content
Log in

Development of a low-volume, highly sensitive microimmunoassay using computational fluid dynamics-driven multiobjective optimization

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Immunoassays are one of the most versatile and widely performed biochemical assays and, given their selectivity and specificity, are used in both clinical and research settings. However, the high cost of reagents and relatively large sample volumes constrain the integration of immunoassays into many applications. Scaling the assay down within microfluidic devices can alleviate issues associated with reagent and sample consumption. However, in many cases, a new device is designed and empirically optimized for each specific analyte, a costly and time-consuming approach. In this paper, we report the development of a microfluidic bead-based immunoassay that, using antibody-coated microbeads, can potentially detect any analyte or combination of analytes for which antibody-coated microbeads can be generated. We also developed a computational reaction model and optimization algorithm that can be used to optimize the device for any analyte. We applied this technique to develop a low-volume IL-6 immunoassay with high sensitivity (358 fM, 10 pg/mL) and a large dynamic range (four orders of magnitude). This device design and optimization technique can be used to design assays for any protein with an available antibody and can be used with a large number of applications including biomarker discovery, temporal in vitro studies using a reduced number of cells and reagents, and analysis of scarce biological samples in animal studies and clinical research settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersson H, van der Wijngaart W, Stemme G (2001) Micromachined filter-chamber array with passive valves for biochemical assays on beads. Electrophoresis 22(2):249–257

    Article  Google Scholar 

  • ANSYS (2010) Fluent 13.0-user manual

  • Bange A, Halsall H, Heineman W (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20(12):2488–2503. doi:10.1016/j.bios.2004.10.016

    Article  Google Scholar 

  • BD (2010) BD FACSCalibur flow cytometry system technical specifications. BD Biosciences. http://www.bdbiosciences.com/documents/FACSCalibur_FlowCytometry_TechSpec.pdf

  • Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4(1):261–286. doi:10.1146/annurev.bioeng.4.112601.125916

    Article  Google Scholar 

  • Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14(3):590–597

    Article  Google Scholar 

  • Bird RB, Stewart WE, Lightfoot EN (2006) Transport phenomena. Wiley, London

    Google Scholar 

  • Boi C, Dimartino S, Sarti GC (2007) Modelling and simulation of affinity membrane adsorption. J Chromatogr A 1162(1):24–33

    Article  Google Scholar 

  • Chan-Park MB, Zhang J, Yan Y, Yue C (2004) Fabrication of large SU-8 mold with high aspect ratio microchannels by UV exposure dose reduction. Sens Actuators B Chem 101(1):175–182

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Derveaux S, Stubbe BG, Braeckmans K, Roelant C, Sato K, Demeester J, Smedt SC (2008) Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient. Anal Bioanal Chem 391(7):2453–2467. doi:10.1007/s00216-008-2062-4

    Article  Google Scholar 

  • Desai SP, Freeman DM, Voldman J (2009) Plastic masters—rigid templates for soft lithography. Lab Chip 9(11):1631–1637

    Article  Google Scholar 

  • Diercks A, Ozinsky A, Hansen C, Spotts J, Rodriguez D, Aderem A (2009) A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal Biochem 386(1):30–35. doi:10.1016/j.ab.2008.12.012

    Article  Google Scholar 

  • Dimartino S, Boi C, Sarti GC (2011) A validated model for the simulation of protein purification through affinity membrane chromatography. J Chromatogr A 1218(13):1677–1690

    Article  Google Scholar 

  • Dullien FA (1991) Porous media: fluid transport and pore structure. Elsevier, Amsterdam

    Google Scholar 

  • ESTECO (2013) modeFRONTIER 4 user manual

  • Fogler HS (1999) Elements of chemical reaction engineering, 3rd edn. Prentice Hall PTR, Upper Saddle River, New Jersey

  • Fordyce PM, Diaz-Botia C, DeRisi JL, Gomez-Sjoberg R (2012) Systematic characterization of feature dimensions and closing pressures for microfluidic valves produced via photoresist reflow. Lab Chip 12:4287–4295

  • Froment GF, Bischoff KB, De Wilde J (1990) Chemical reactor analysis and design, vol 2. Wiley, New York

    Google Scholar 

  • Haynes WM, Lide DR, Bruno TJ (2012) CRC handbook of chemistry and physics 2012–2013. CRC Press, Boca Raton

    Google Scholar 

  • He L, Niemeyer B (2003) A novel correlation for protein diffusion coefficients based on molecular weight and radius of gyration. Biotechnol Prog 19(2):544–548

    Article  Google Scholar 

  • He H, Yuan Y, Wang W, Chiou N-R, Epstein AJ, Lee LJ (2009) Design and testing of a microfluidic biochip for cytokine enzyme-linked immunosorbent assay. Biomicrofluidics 3(2):022401. doi:10.1063/1.3116665

    Article  Google Scholar 

  • Henares TG, Mizutani F, Hisamoto H (2008) Current development in microfluidic immunosensing chip. Anal Chim Acta 611(1):17–30. doi:10.1016/j.aca.2008.01.064

    Article  Google Scholar 

  • Houser B (2012) Bio-Rad’s Bio-Plex(R) suspension array system, xMAP technology overview. Arch Physiol Biochem 118(4):192–196. doi:10.3109/13813455.2012.705301

    Article  Google Scholar 

  • Kong J, Jiang L, Su X, Qin J, Du Y, Lin B (2009) Integrated microfluidic immunoassay for the rapid determination of clenbuterol. Lab Chip 9(11):1541–1547

    Article  Google Scholar 

  • Konry T, Smolina I, Yarmush JM, Irimia D, Yarmush ML (2011) Ultrasensitive detection of low-abundance surface-marker protein using isothermal rolling circle amplification in a microfluidic nanoliter platform. Small 7(3):395–400

    Article  Google Scholar 

  • Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2(12):910–919

    Article  Google Scholar 

  • Lionello A, Josserand J, Jensen H, Girault HH (2005a) Dynamic protein adsorption in microchannels by “stop-flow” and continuous flow. Lab Chip 5(10):1096–1103

    Article  Google Scholar 

  • Lionello A, Josserand J, Jensen H, Girault HH (2005b) Protein adsorption in static microsystems: effect of the surface to volume ratio. Lab Chip 5(3):254–260

    Article  Google Scholar 

  • Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press, Boca Raton

    Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  Google Scholar 

  • Montgomery D (2009) Design and analysis of experiments, 7th edn. Wiley, New York

    Google Scholar 

  • Ng AHC, Uddayasankar U, Wheeler AR (2010) Immunoassays in microfluidic systems. Anal Bioanal Chem 397(3):991–1007. doi:10.1007/s00216-010-3678-8

    Article  Google Scholar 

  • Phillips TM (2004) Rapid analysis of inflammatory cytokines in cerebrospinal fluid using chip-based immunoaffinity electrophoresis. Electrophoresis 25(1011):1652–1659. doi:10.1002/elps.200305873

    Article  Google Scholar 

  • Piran U, Riordan WJ (1990) Dissociation rate constant of the biotin–streptavidin complex. J Immunol Methods 133(1):141–143

    Article  Google Scholar 

  • Sasso LA, Undar A, Zahn JD (2010) Autonomous magnetically actuated continuous flow microimmunofluorocytometry assay. Microfluid Nanofluid 9(2–3):253–265. doi:10.1007/s10404-009-0543-1

    Article  Google Scholar 

  • Sasso LA, Johnston IH, Zheng M, Gupte RK, Ündar A, Zahn JD (2012) Automated microfluidic processing platform for multiplexed magnetic bead immunoassays. Microfluid Nanofluid 13(4):603–612

    Article  Google Scholar 

  • Sato K, Tokeshi M, Odake T, Kimura H, Ooi T, Nakao M, Kitamori T (2000) Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip. Anal Chem 72(6):1144–1147

    Article  Google Scholar 

  • Sato K, Yamanaka M, Takahashi H, Tokeshi M, Kimura H, Kitamori T (2002) Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-γ. Electrophoresis 23(5):734–739

    Article  Google Scholar 

  • Schneider F, Draheim J, Kamberger R, Wallrabe U (2009) Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS. Sens Actuators A 151(2):95–99. doi:10.1016/j.sna.2009.01.026

    Article  Google Scholar 

  • Seong GH, Crooks RM (2002) Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts. J Am Chem Soc 124(45):13360–13361

    Article  Google Scholar 

  • Shapiro JS, Stiteler M, Wu G, Price EA, Simon AJ, Sankaranarayanan S (2011) Cisterna magna cannulated repeated CSF sampling rat model-effects of a gamma-secretase inhibitor on Aβ levels. J Neurosci Methods 205:36–44

  • Shin KS, Lee SW, Han KC, Kim SK, Yang EK, Park JH, Ju BK, Kang JY, Kim TS (2007) Amplification of fluorescence with packed beads to enhance the sensitivity of miniaturized detection in microfluidic chip. Biosens Bioelectron 22(9):2261–2267

    Article  Google Scholar 

  • Shoemaker LD, Achrol AS, Sethu P, Steinberg GK, Chang SD (2012) Clinical neuroproteomics and biomarkers: from basic research to clinical decision making. Neurosurgery 70(3):518

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977

    Article  Google Scholar 

  • Stammers AT, Liu J, Kwon BK (2012) Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J Neurosci Res 90(4):782–790. doi:10.1002/jnr.22820

    Article  Google Scholar 

  • Toumpanakis D, Theodoros V (2007) Molecular mechanisms of action of Interleukin-6 (IL-6). Pneumon 20:154–167

    Google Scholar 

  • Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116. doi:10.1126/science.288.5463.113

    Article  Google Scholar 

  • Wild D (2005) The immunoassay handbook. Elsevier Ltd., San Diego

  • Wilkes JO (2006) Fluid mechanics for chemical engineers. Prentice Hall PTR, Upper Saddle River

  • Wilson R, Cossins AR, Spiller DG (2006) Encoded microcarriers for high-throughput multiplexed detection. Angew Chem Int Edit 45(37):6104–6117. doi:10.1002/anie.200600288

    Article  Google Scholar 

  • Winz R, de los Rıos Gonzalez A, von Lieres E, Schmittel M, Wiechert W (2007) Simulation of a micro-analytical device for adsorbing substances from a fluid. In: Proceedings of the European Comsol conference, Grenoble, 2007, pp 736–741

  • Xia YN, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  • Yoo SK, Kim YM, Yoon SY, Kwon H-S, Lee JH, Yang S (2011) Bead packing and release using flexible polydimethylsiloxane membrane for semi-continuous biosensing. Artif Organs. doi:10.1111/j.1525-1594.2011.01240.x

    Google Scholar 

  • Zimmermann M, Delamarche E, Wolf M, Hunziker P (2005) Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays. Biomed Microdevices 7(2):99–110

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the National Institute of Health Grants P41EB002503 and UH2TR000503, the National Institute of Health Rutgers Biotechnology Training Program (T32GM008339), and the National Science Foundation Integrated Science and Engineering of Stem Cells Program (DGE0801620). The authors would like to thank Dr. Sara Salahi, Dr. Kellie Anderson, and Anwesha Chaudhury for productive conversations regarding computational and optimization issues, Dana Barrasso for guidance pertaining to statistical analysis, Dr. Bhaskar Mitra for support in developing the fabrication protocols, and modeFrontier customer support for extensive troubleshooting of the optimization platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin L. Yarmush.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodbane, M., Kulesa, A., Yu, H.H. et al. Development of a low-volume, highly sensitive microimmunoassay using computational fluid dynamics-driven multiobjective optimization. Microfluid Nanofluid 18, 199–214 (2015). https://doi.org/10.1007/s10404-014-1416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1416-9

Keywords

Navigation