Skip to main content
Log in

Microfluidic concentration-on-demand combinatorial dilutions

  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a microfluidic network-based combinatorial dilution device to generate on-demand combinatorial dilutions of all input samples in the range of a 3D simplex-centroid. The device consists of an initial concentration control module and a combinatorial dilution module. In the initial concentration control module, the concept of using a single common channel has been incorporated to generate desirable concentrations of each sample, diluted independently in response to variable input flow. Then, the diluted samples flow into the combinatorial dilution module to generate a full set of seven combinations from the three samples. First, we investigated the performance of the initial concentration controller by computational simulation (CFD-ACE+). The simulated output concentrations are extremely close to the expected theoretical values. Further, a PDMS-based initial concentration controller was fabricated, and its linearity and independency were tested with fluorescent dye. Then, we designed, simulated, and tested a combinatorial dilution device integrated with the initial concentration controller. Finally, as proof-of-concept, we performed a simple combinatorial cytotoxicity test with three drugs (Mitomycin C, Doxorubicin, and 5-FU) for MCF-7 cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal N, Pallos J, Slepko N, Apostol BL, Bodai L, Chang LW, Chiang AS, Thompson LM, Marsh JL (2005) Identification of combinatorial drug regimens for treatment of Huntington’s disease using Drosophila. Proc Natl Acad Sci USA 102(10):3777–3781

    Article  Google Scholar 

  • Baah D, Vickers D, Hollinger A, Floyd-Smith T (2008) Patterned dispersion of nanoparticles in hydrogels using microfluidics. Mater Lett 62(23):3833–3835

    Article  Google Scholar 

  • Bang H, Lim SH, Lee YK, Chung S, Chung C, Han DC, Chang JK (2004) Serial dilution microchip for cytotoxicity test. J Micromech Microeng 14(8):1165–1170

    Article  Google Scholar 

  • Campbell K, Groisman A (2007) Generation of complex concentration profiles in microchannels in a logarithmically small number of steps. Lab Chip 7(2):264–272

    Article  Google Scholar 

  • Chang JK, Bang H, Park SJ, Chung S, Chung C, Han DC (2003) Fabrication of the PDMS microchip for serially diluting sample with buffer. Microsyst Technol 9(8):555–558

    Article  Google Scholar 

  • Cooksey GA, Sip CG, Folch A (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9(3):417–426

    Article  Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281

    Article  Google Scholar 

  • Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2(2):119–125

    Article  Google Scholar 

  • Garcia-Egido E, Spikmans V, Wong SYF, Warrington BH (2003) Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system. Lab Chip 3(2):73–76

    Article  Google Scholar 

  • Hattori K, Sugiura S, Kanamori T (2009) Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Lab Chip 9(12):1763–1772

    Article  Google Scholar 

  • Hattori K, Sugiura S, Kanamori T (2011) Microenvironment array chip for cell culture environment screening. Lab Chip 11(2):212–214

    Article  Google Scholar 

  • Holden MA, Kumar S, Castellana ET, Beskok A, Cremer PS (2003) Generating fixed concentration arrays in a microfluidic device. Sens Actuators B 92(1–2):199–207

    Article  Google Scholar 

  • Irimia D, Geba DA, Toner M (2006) Universal microfluidic gradient generator. Anal Chem 78(10):3472–3477

    Article  Google Scholar 

  • Ismagilov RF, Ng JMK, Kenis PJA, Whitesides GM (2001) Microfluidic arrays of fluid-fluid diffusional contacts as detection elements and combinatorial tools. Anal Chem 73(21):5207–5213

    Article  Google Scholar 

  • Jacobson SC, McKnight TE, Ramsey JM (1999) Microfluidic devices for electrokinetically driven parallel and serial mixing. Anal Chem 71(20):4455–4459

    Article  Google Scholar 

  • Jeon NL, Baskaran H, Dertinger SKW, Whitesides GM, Van de Water L, Toner M (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20(8):826–830

    Google Scholar 

  • Kang JH, Um E, Park JK (2009) Fabrication of a poly(dimethylsiloxane) membrane with well-defined through-holes for three-dimensional microfluidic networks. J Micromech Microeng 19(4):045027

    Article  Google Scholar 

  • Kikutani Y, Horiuchi T, Uchiyama K, Hisamoto H, Tokeshi M, Kitamori T (2002) Glass microchip with three-dimensional microchannel network for 2 × 2 parallel synthesis. Lab Chip 2(4):188–192

    Article  Google Scholar 

  • Kikutani Y, Ueno M, Hisamoto H, Tokeshi M, Kitamori T (2005) Continuous-flow chemical processing in three-dimensional microchannel network for on-chip integration of multiple reactions in a combinatorial mode. QSAR Comb Sci 24(6):742–757

    Article  Google Scholar 

  • Kirsten G, Maier WF (2004) Strategies for the discovery of new catalysts with combinatorial chemistry. Appl Surf Sci 223(1–3):87–101

    Article  Google Scholar 

  • Lee K, Kim C, Ahn B, Panchapakesan R, Full AR, Nordee L, Kang JY, Oh KW (2009) Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab Chip 9(5):709–717

    Article  Google Scholar 

  • Lee K, Kim C, Jung G, Kim TS, Kang JY, Oh KW (2010a) Microfluidic network-based combinatorial dilution device for high throughput screening and optimization. Microfluid Nanofluid 8(5):677–685

    Article  Google Scholar 

  • Lee K, Kim C, Kim Y, Jung K, Ahn B, Kang JY, Oh KW (2010b) 2-layer based microfluidic concentration generator by hybrid serial and volumetric dilutions. Biomed Microdevices 12(2):297–309

    Article  Google Scholar 

  • Lehar J, Krueger AS, Avery W, Heilbut AM, Johansen LM, Price ER, Rickles RJ, Short GF, Staunton JE, Jin XW, Lee MS, Zimmermann GR, Borisy AA (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 27(7):659–666

    Article  Google Scholar 

  • Maier WF, Stowe K, Sieg S (2007) Combinatorial and high-throughput materials science. Angew Chem Int Ed 46(32):6016–6067

    Article  Google Scholar 

  • Mosadegh B, Agarwal M, Torisawa YS, Takayama S (2010) Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic applications. Lab Chip 10(15):1983–1986

    Article  Google Scholar 

  • Neils C, Tyree Z, Finlayson B, Folch A (2004) Combinatorial mixing of microfluidic streams. Lab Chip 4(4):342–350

    Article  Google Scholar 

  • Paegel BM, Grover WH, Skelley AM, Mathies RA, Joyce GF (2006) Microfluidic serial dilution circuit. Anal Chem 78(21):7522–7527

    Article  Google Scholar 

  • Pereira SRM, Clerc F, Farrusseng D, van der Waal JC, Maschmeyer T (2007) Optimisation methodologies and algorithms for research on catalysis employing high-throughput methods: comparison using the selox benchmark. Comb Chem High Throughput Screen 10(2):149–159

    Article  Google Scholar 

  • Pihl J, Sinclair J, Sahlin E, Karlsson M, Petterson F, Olofsson J, Orwar O (2005) Microfluidic gradient-generating device for pharmacological profiling. Anal Chem 77(13):3897–3903

    Article  Google Scholar 

  • Pirnia F, Schneider E, Betticher DC, Borner MM (2002) Mitomycin C induces apoptosis and caspase-8 and-9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ 9(9):905–914

    Article  Google Scholar 

  • Sagara N, Katoh M (2000) Mitomycin C resistance induced by TCF-3 overexpression in gastric cancer cell line MKN28 is associated with DT-diaphorase down-regulation. Cancer Res 60(21):5959–5962

    Google Scholar 

  • Schudel BR, Choi CJ, Cunningham BT, Kenis PJA (2009) Microfluidic chip for combinatorial mixing and screening of assays. Lab Chip 9(12):1676–1680

    Article  Google Scholar 

  • Singh B, Dahiya M, Saharan P, Ahuja N (2005) Optimizing drug delivery systems using systematic “design of experiments”. Part II: retrospect and prospects. Crit Rev Ther Drug Carrier Syst 22(3):215–293

    Article  Google Scholar 

  • Sugiura S, Edahiro J, Kikuchi K, Sumaru K, Kanamori T (2008) Pressure-driven perfusion culture microchamber array for a parallel drug cytotoxicity assay. Biotechnol Bioeng 100(6):1156–1165

    Article  Google Scholar 

  • Tsao CW, Tao S, Chen CF, Liu JK, DeVoe DL (2010) Interfacing microfluidics to LDI-MS by automatic robotic spotting. Microfluid Nanofluid 8(6):777–787

    Article  Google Scholar 

  • Tye H (2004) Application of statistical ‘design of experiments’ methods in drug discovery. Drug Discov Today 9(11):485–491

    Article  Google Scholar 

  • Webster DC (2008) Combinatorial and high-throughput methods in macromolecular materials research and development. Macromol Chem Phys 209(3):237–246

    Article  Google Scholar 

  • Yang K, EI-Haik BS (2008) Design for six sigma: a roadmap for product development, 2nd edn. McGraw Hill Professional, New York, NY

    Google Scholar 

  • Yang J, Li CW, Yang MS (2002) Lab-on-a-chip (microfluidics) technology. Acta Biochim Biophys Sin 34(2):117–123

    Google Scholar 

  • Yu ZTF, Kamei KI, Takahashi H, Shu CJ, Wang XP, He GW, Silverman R, Radu CG, Witte ON, Lee KB, Tseng HR (2009) Integrated microfluidic devices for combinatorial cell-based assays. Biomed Microdevices 11(3):547–555

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of NSF grants (ECCS-1002255 and ECCS-0736501) and the Intelligent Microsystems Center, which is carrying out one of the 21st Century’s Frontier R&D Projects sponsored by the Korea Ministry of Knowledge Economy. In addition, we would like to thank Femto Science, Korea, for providing a plasma system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang W. Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Kim, C., Kim, Y. et al. Microfluidic concentration-on-demand combinatorial dilutions. Microfluid Nanofluid 11, 75–86 (2011). https://doi.org/10.1007/s10404-011-0775-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0775-8

Keywords

Navigation