Skip to main content
Log in

Microfluidic network-based combinatorial dilution device for high throughput screening and optimization

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a combinatorial dilution device using a three-layer microfluidic network that can produce systematic variations of buffer and additive solutions in a combinatorial fashion for high throughput screening and optimization. A proof-of-concept device providing seven combinations (ABC/D, AB/D, BC/D, AC/D, A/D, B/D, and C/D) of three additive samples (A, B, and C) into a buffer solution (D) has been demonstrated. Such combinations are often used in simplex-centroid mixture DOE (design of experiments), useful techniques to minimize the experimental efforts at maximal information output with systematic variations of large-scale components. Based on mathematical and electrical modeling and computational fluid dynamic simulation, the device has been designed, fabricated, and characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Assay Guidance Manual Version 5.0. (2008) Eli Lilly and Company and NIH Chemical Genomics Center. http://www.ncgc.nih.gov/guidance/manual_toc.html

  • Breslauer DN, Lee PJ et al (2006) Microfluidics-based systems biology. Mol Biosyst 2(2):97–112

    Article  Google Scholar 

  • Campbell K, Groisman A (2007) Generation of complex concentration profiles in microchannels in a logarithmically small number of steps. Lab Chip 7(2):264–272

    Article  Google Scholar 

  • Cooksey GA, Sip CG et al (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9(3):417–426

    Article  Google Scholar 

  • Dertinger SKW, Chiu DT et al (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73(6):1240–1246

    Article  Google Scholar 

  • Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218

    Article  Google Scholar 

  • Garcia-Egido E, Spikmans V et al (2003) Synthesis and analysis of combinatorial libraries performed in an automated micro reactor system. Lab Chip 3(2):73–76

    Article  Google Scholar 

  • Greve F, Seemann L et al (2007) A hybrid microsystem for parallel perfusion experiments on living cells. J Micromech Microeng 17(8):1721–1730

    Article  Google Scholar 

  • Hattori K, Sugiura S et al (2009) Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Lab Chip. doi:10.1039/b816995k

  • Holden MA, Kumar S et al (2003) Generating fixed concentration arrays in a microfluidic device. Sens Actuators B 92(1–2):199–207

    Article  Google Scholar 

  • Irimia D, Geba DA et al (2006) Universal microfluidic gradient generator. Anal Chem 78(10):3472–3477

    Article  Google Scholar 

  • Islam RS, Tisi D et al (2007) Framework for the rapid optimization of soluble protein expression in Escherichia coli combining microscale experiments and statistical experimental design. Biotechnol Prog 23(4):785–793

    Google Scholar 

  • Ismagilov RF, Ng JMK et al (2001) Microfluidic arrays of fluid–fluid diffusional contacts as detection elements and combinatorial tools. Anal Chem 73(21):5207–5213

    Article  Google Scholar 

  • Jacobson SC, McKnight TE et al (1999) Microfluidic devices for electrokinetically driven parallel and serial mixing. Anal Chem 71(20):4455–4459

    Article  Google Scholar 

  • Jeon NL, Dertinger SKW et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16(22):8311–8316

    Article  Google Scholar 

  • Kang JH, Um E et al (2009) Fabrication of a poly(dimethylsiloxane) membrane with well-defined through-holes for three-dimensional microfluidic networks. J Micromech Microeng 19:045027 (6 pp)

    Google Scholar 

  • Kikutani Y, Horiuchi T et al (2002) Glass microchip with three-dimensional microchannel network for 2 × 2 parallel synthesis. Lab Chip 2(4):188–192

    Article  Google Scholar 

  • Kikutani Y, Ueno M et al (2005) Continuous-flow chemical processing in three-dimensional microchannel network for on-chip integration of multiple reactions in a combinatorial mode. QSAR Comb Sci 24(6):742–757

    Article  Google Scholar 

  • Kim C, Lee K et al (2008) A serial dilution microfluidic device using a ladder network generating logarithmic or linear concentrations. Lab Chip 8(3):473–479

    Article  Google Scholar 

  • Kirsten G, Maier WF (2004) Strategies for the discovery of new catalysts with combinatorial chemistry. Appl Surf Sci 223(1–3):87–101

    Article  Google Scholar 

  • Lee K, Kim C et al (2009) Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators. Lab Chip 9(5):709–717

    Article  Google Scholar 

  • Liu MC, Ho D et al (2008) Monolithic fabrication of three-dimensional microfluidic networks for constructing cell culture array with an integrated combinatorial mixer. Sens Actuators B 129(2):826–833

    Article  MathSciNet  Google Scholar 

  • Maier WF, Stowe K et al (2007) Combinatorial and high-throughput materials science. Angew Chem Int Ed 46(32):6016–6067

    Article  Google Scholar 

  • Muteki K, MacGregor JF et al (2007) Mixture designs and models for the simultaneous selection of ingredients and their ratios. Chemom Intell Lab Syst 86(1):17–25

    Article  Google Scholar 

  • Narasimhan B, Mallapragada SK, Porter MD (2007) Combinatorial materials science. Wiley, New York

  • Neils C, Tyree Z et al (2004) Combinatorial mixing of microfluidic streams. Lab Chip 4(4):342–350

    Article  Google Scholar 

  • Pereira SRM, Clerc F et al (2007) Optimisation methodologies and algorithms for research on catalysis employing high-throughput methods: comparison using the selox benchmark. Comb Chem High Throughput Screen 10(2):149–159

    Article  Google Scholar 

  • Schudel BR, Choi CJ, Cunningham BT, Kenis PJA (2009) Microfluidic chip for combinatorial mixing and screening of assays. Lab Chip 9:1676–1680

    Google Scholar 

  • Singh B, Dahiya M et al (2005) Optimizing drug delivery systems using systematic “design of experiments”. Part II: retrospect and prospects. Crit Rev Therap Drug Carr Syst 22(3):215–294

    Article  Google Scholar 

  • Smith CG, O’Donnell JT (2006) The process of new drug discovery and development. Informa Health Care, New York

  • Timbrell JA (2000) Principles of biochemical toxicology. Taylor & Francis, London

  • Tye H (2004) Application of statistical ‘design of experiments’ methods in drug discovery. Drug Discov Today 9(11):485–491

    Article  Google Scholar 

  • Walker GM, Monteiro-Riviere N et al (2007) A linear dilution microfluidic device for cytotoxicity assays. Lab Chip 7(2):226–232

    Article  Google Scholar 

  • Webster DC (2008) Combinatorial and high-throughput methods in macromolecular materials research and development. Macromol Chem Phys 209(3):237–246

    Article  Google Scholar 

  • Yang K, EI-Haik BS (2008) Design for six sigma: a roadmap for product development, McGraw-Hill Professional, New York

  • Yu ZTF, Kamei KI et al (2009) Integrated microfluidic devices for combinatorial cell-based assays. Biomed Microdevices 11(3):547–555

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Intelligent Microsystem Center, which is carrying out one of the 21st Century’s Frontier R&D Projects sponsored by the Korea Ministry of Commerce, Industry and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang W. Oh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 451 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Kim, C., Jung, G. et al. Microfluidic network-based combinatorial dilution device for high throughput screening and optimization. Microfluid Nanofluid 8, 677–685 (2010). https://doi.org/10.1007/s10404-009-0500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-009-0500-z

Keywords

Navigation