Skip to main content
Log in

Application of a process-based shallow landslide hazard model over a broad area in Central Italy

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Process-based models are widely used for rainfall-induced shallow landslide forecasting. Previous studies have successfully applied the U.S. Geological Survey’s Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS) model (Baum et al. 2002) to compute infiltration-driven changes in the hillslopes’ factor of safety on small scales (i.e., tens of square kilometers). Soil data input for such models are difficult to obtain across larger regions. This work describes a novel methodology for the application of TRIGRS over broad areas with relatively uniform hydrogeological properties. The study area is a 550-km2 region in Central Italy covered by post-orogenic Quaternary sediments. Due to the lack of field data, we assigned mechanical and hydrological property values through a statistical analysis based on literature review of soils matching the local lithologies. We calibrated the model using rainfall data from 25 historical rainfall events that triggered landslides. We compared the variation of pressure head and factor of safety with the landslide occurrence to identify the best fitting input conditions. Using calibrated inputs and a soil depth model, we ran TRIGRS for the study area. Receiver operating characteristic (ROC) analysis, comparing the model’s output with a shallow landslide inventory, shows that TRIGRS effectively simulated the instability conditions in the post-orogenic complex during historical rainfall scenarios. The implication of this work is that rainfall-induced landslides over large regions may be predicted by a deterministic model, even where data on geotechnical and hydraulic properties as well as temporal changes in topography or subsurface conditions are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Antonini G, Cardinali M, Guzzetti F, et al. (1993) Carta Inventario dei Movimenti Franosi della Regione Marche ed aree limitrofe. Pubblicazione CNR GNDCI n. 580, 2 Fogli, Scala 1:100.000, Perugia

  • Baum RL, Godt JW (2013) Correction to “Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration.”. J Geophys Res Earth Surf 118:1. doi:10.1002/jgrf.20100

    Article  Google Scholar 

  • Baum R, Savage W, Godt J (2002) TRIGRS—a Fortran program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis. U.S. Geological Survey Open-File Report 02–0424 (http://pubs.usgs.gov/of/2002/ofr-02-424/)

  • Baum R, Savage W, Godt J (2008) TRIGRS—a Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. U.S. Geological Survey Open-File Report 2008–1159 (http://pubs.usgs.gov/of/2008/1159/)

  • Baum RL, Godt JW, Savage WZ (2010) Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. J Geophys Res 115:1–26. doi:10.1029/2009JF001321

    Article  Google Scholar 

  • Bisci C, Dramis F (eds) (1991) La geomorfologia delle Marche. In: L’ambiente Fisico delle Marche. SELCA, Firenze, Italy, pp 83–103 (in Italian)

  • Brady NC (1990) The nature and properties of soils, 10th edn. Macmillan, New York

    Google Scholar 

  • Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Ser A Phys Geogr 62:23–27. doi:10.2307/520449

    Article  Google Scholar 

  • Casagli N, Dapporto S, Ibsen ML et al (2006) Analysis of the landslide triggering mechanism during the storm of 20th–21st November 2000, in Northern Tuscany. Landslides 3:13–21. doi:10.1007/s10346-005-0007-y

    Article  Google Scholar 

  • Cascini L, Gullà G, Sorbino G (2006) Groundwater modelling of a weathered gneissic cover. Can Geotech J 43:1153–1166. doi:10.1139/T06-066

    Article  Google Scholar 

  • Cascini L, Calvello M, Grimaldi G (2010) Groundwater modeling for the analysis of active slow-moving landslides. J Geotech Geoenvironmental Eng 136:1220–1230. doi: 10.1061/?ASCE?GT.1943-5606.0000323 CE

  • Cassinis R, Tabacco I, Bruzzi G et al (1985) The contribution of geophysical methods to the study of the great Ancona landslide (December 13, 1982). Geoexploration 23:363–386. doi:10.1016/0016-7142(85)90003-1

    Article  Google Scholar 

  • Cervi F, Berti M, Borgatti L et al (2010) Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides 7:433–444. doi:10.1007/s10346-010-0207-y

    Article  Google Scholar 

  • Chen HX, Zhang LM (2014) A physically-based distributed cell model for predicting regional rainfall-induced shallow slope failures. Eng Geol 176:79–92. doi:10.1016/j.enggeo.2014.04.011

    Article  Google Scholar 

  • Coe J, Michael J, Crovelli RA et al (2004) Probabilistic assessment of precipitation-triggered landslides using historical records of landslide occurrence, Seattle, Washington. Environ Eng Geosci X:103–122

    Article  Google Scholar 

  • Coltorti M, Nanni T (1987) La bassa valle del Fiume Esino: geomorfologia, idrogeologia e neotettonica. Boll della Soc Geol Ital 106:35–51 (in Italian)

    Google Scholar 

  • Cotecchia V (2006) The Second Hans Cloos Lecture. Experience drawn from the great Ancona landslide of 1982. Bull Eng Geol Environ 65:1–41. doi:10.1007/s10064-005-0024-z

    Article  Google Scholar 

  • Crescenti U, Favali P, Rainone M, et al. (2000) About landslide risk evaluation: the example of Numana cliff (Central Italy). In: GeoEng2000: an International Conference on Geotechnical & Geological Engineering, Melbourne, Australia, 19–24 November 2000

  • Crosta GB, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Hazards Earth Syst Sci 3:81–93. doi:10.5194/nhess-3-81-2003

    Article  Google Scholar 

  • Dapporto S, Rinaldi M, Casagli N (2001) Failure mechanisms and pore water pressure conditions: analysis of a riverbank along the Arno River (Central Italy). Eng Geol 61:221–242. doi:10.1016/S0013-7952(01)00026-6

    Article  Google Scholar 

  • DeRose R, Trustrum N, Blaschke P (1991) Geomorphic change implied by regolith—slope relationships on steepland hillslopes, Taranaki, New Zealand. Catena 18:489–514

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874. doi:10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  • Folchi Vici D’Arcevia C, Nanni T, Palpacelli S, et al. (2008) Schema Idrogeologico della Regione Marche, Foglio Nord, Scala 1:100.000. Regione Marche – Servizio Ambiente e Paesaggio, Ancona

  • Gardner W (1958) Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85:228–232. doi:10.1097/00010694-195804000-00006

    Article  Google Scholar 

  • Gentili B, Dramis F (eds) (1997) Geomorphology and quaternary evolution of Central Italy—guide for the excursion. Suppl Geogr Fis Dinam Quat 3:79–103

  • Godt JW, Baum RL, Chleborad AF (2006) Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surf Process Landforms 31:97–110. doi:10.1002/esp.1237

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M (2005) Definition of critical thresholds for different scenarios. RISK-advanced weather forecast system to advise on risk events and management. IRPI CNR, Perugia

    Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. doi:10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Guzzetti F, Salvati P, Rossi M, Bianchi C (2013) Rischio geo-idrologico per la popolazione in Italia. In: Atti dei Convegni Lincei n. 270. Roma, 23 March 2012 (in Italian)

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910. doi:10.1029/2000WR900090

    Article  Google Scholar 

  • Luzi L, Pergalani F (1996) Applications of statistical and GIS techniques to slope instability zonation (1:50.000 Fabriano geological map sheet). Soil Dyn Earthq Eng 15:83–94. doi:10.1016/0267-7261(95)00031-3

    Article  Google Scholar 

  • Marche Region – Statistical Information System (2008) Demografia—Marche Popolazione: Anni 2002–2007 (http://statistica.regione.marche.it/Statistiche-per-argomento/Pubblicazioni/Popolazione-Pubblicazioni-Archivio) (in Italian)

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153. doi:10.1029/93WR02979

    Article  Google Scholar 

  • Montrasio L, Valentino R, Losi GL (2011) Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale. Nat Hazards Earth Syst Sci 11:1927–1947. doi:10.5194/nhess-11-1927-2011

    Article  Google Scholar 

  • Principi M, Bettucci C, Carotti A (2007) Analisi del dissesto da frana nelle Marche. In: Rapporto sulle frane in Italia. Il Progetto IFFI – Metodologia, risultati e rapporti regionali. APAT - Dipartimento Difesa del Suolo, Servizio Geologico d’Italia, Roma, pp 425–444 (in Italian)

  • Raia S, Alvioli M, Rossi M et al (2014) Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geosci Model Dev 7:495–514. doi:10.5194/gmd-7-495-2014

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. J Appl Phys 1:318–333. doi:10.1063/1.1745010

    Google Scholar 

  • Rinaldi M, Casagli N (1999) Stability of streambanks formed in partially saturated soils and effects of negative pore water pressures: the Sieve River (Italy). Geomorphology 26:253–277. doi:10.1016/S0169-555X(98)00069-5

    Article  Google Scholar 

  • Rinaldi M, Casagli N, Dapporto S, Gargini A (2004) Monitoring and modelling of pore water pressure changes and riverbank stability during flow events. Earth Surf Process Landforms 29:237–254. doi:10.1002/esp.1042

    Article  Google Scholar 

  • Salciarini D, Godt JW, Savage WZ et al (2006) Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides 3:181–194. doi:10.1007/s10346-006-0037-0

    Article  Google Scholar 

  • Savage WZ, Godt JW, Baum RL (2003) A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration. In: Proceedings of 3rd international conference on debris flow hazards mitigation: mechanics, prediction, and assessment, Davos, Switzerland, 10–12 September 2003, pp 179–187

  • Savage WZ, Godt JW, Baum RL (2004) Modeling time-dependent slope stability. In: Proceedings of 9th international symposium on landslides, Rio de Janeiro, Brazil, 28 June–2 July 2004, pp 23–38

  • Simoni A, Berti M, Generali M et al (2004) Preliminary result from pore pressure monitoring on an unstable clay slope. Eng Geol 73:117–128. doi:10.1016/j.enggeo.2003.12.004

    Article  Google Scholar 

  • Soil Survey Division Staff (1993) Soil survey manual. United States Department of Agriculture. pp. 63–65. Retrieved 30 August 2014

  • Srivastava R, Yeh TCJ (1991) Analytical solutions for one dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour Res 27:753–762. doi:10.1029/90WR02772

    Article  Google Scholar 

  • Staley DM, Kean JW, Cannon SH et al (2013) Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides 10:547–562. doi:10.1007/s10346-012-0341-9

    Article  Google Scholar 

  • Taylor DW (1948) Fundamentals of soil mechanics. Soil Sci 66:700. doi:10.1097/00010694-194808000-00008

    Article  Google Scholar 

  • Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  • Tofani V, Dapporto S, Vannocci P, Casagli N (2006) Infiltration, seepage and slope instability mechanisms during the 20–21 November 2000 rainstorm in Tuscany, Central Italy. Nat Hazards Earth Syst Sci 6:1025–1033. doi:10.5194/nhess-6-1025-2006

    Article  Google Scholar 

  • Vanapalli S, Fredlund D (2000) Comparison of different procedures to predict unsaturated soil shear strength. In: Shackleford C, Houston SL, Chang N-Y (eds) Advances in unsaturated geotechnics, Denver, Colorado, 3 – August 2000. Geotechnical Special Publication 99. ASCE, pp 195–209

  • Vennari C, Gariano SL, Antronico L et al (2014) Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Nat Hazards Earth Syst Sci 14:317–330. doi:10.5194/nhess-14-317-2014

    Article  Google Scholar 

  • Wieczorek G (1996) Landslide triggering mechanisms. In: Turner A, Schuster R (eds) Landslides, Investigation and Mitigation. Transportation Research Board, Special Report, vol 247. National Academy Press, Washington, DC, pp 76–90

    Google Scholar 

Download references

Acknowledgments

This work is part of a Ph.D. project in Civil and Environmental Protection at the Università Politecnica delle Marche at Ancona, Italy, supported by the Civil Protection of the Marche Region and the USGS Geologic Hazards Science Center in Denver, Colorado. Authors would like to thank the anonymous reviewers for the encouraging and constructive comments, which helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Marincioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gioia, E., Speranza, G., Ferretti, M. et al. Application of a process-based shallow landslide hazard model over a broad area in Central Italy. Landslides 13, 1197–1214 (2016). https://doi.org/10.1007/s10346-015-0670-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-015-0670-6

Keywords

Navigation