Skip to main content
Log in

A stable reference frame for landslide monitoring using GPS in the Puerto Rico and Virgin Islands region

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Global Positioning System (GPS) technologies have been frequently applied for the purpose of landslide monitoring. A local stable reference frame is essential for precisely interpreting landslide movements derived from GPS observations. In this study, we define a stable reference frame using over 5 years of continuous GPS data collected from eight permanent GPS stations in the Puerto Rico and Virgin Islands (PRVI) region. The realization of the Stable Puerto Rico and Virgin Islands Reference Frame (SPRVIRF) is defined in terms of a 14-parameter Helmert transformation from the International Global Navigation Satellite System (GNSS) Service Reference Frame of 2008 (IGS08). SPRVIRF is aligned with the IGS08 at epoch 2013.0. The GIPSY/OASIS (V6.2) software package, which employs the precise point positioning (PPP) with single receiver phase ambiguity resolution, was used to calculate position coordinates within IGS08. Through the combined use of the PPP post-processing method and SPRVIRF, it is practical and easy to conduct millimeter accuracy landslide monitoring by a single technician with a single GPS unit. SPRVIRF provides a precise common reference frame in the PRVI region that can be used for a broad range of research applications, such as delineating long-term landslide creeping, studying ground deformation associated with subsidence, fault creep, hydrologic loading and microplate motions, and monitoring long-term deformation of critical structures, such as dams, high-rise buildings, and long-span bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bar-Sever YE, Kroger PM, Borjesson JA (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res 103(B3):5019–5035

    Article  Google Scholar 

  • Bertiger W, Desai SD, Haines B, Harvey N, Moore AW, Owen S, Weiss JP (2010) Single receiver phase ambiguity resolution with GPS data. J Geodesy 84:327–337. doi:10.1007/s00190-010-0371-9

    Article  Google Scholar 

  • Blewitt G (1989) Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2,000 km. J Geophys Res 94(B8):10,187–10,203

    Article  Google Scholar 

  • Blewitt G, Heflin MB, Webb FH, Lindqwister UJ, Rajendra PM (1992) Global coordinates with centimeter accuracy in the International Terrestrial Reference frame using GPS. Geopgys Res Lett 19(9):853–856

    Article  Google Scholar 

  • Blewitt G,Kreemer C, Hammond WH, Goldfarb J (2013) Terrestrial reference frame NA12 for crustal deformation studies in North America. J Geodyn (in press)

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geopgys Res Lett 33:L07304. doi:10.1029/2005/GL025546

    Google Scholar 

  • Bruckl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng Geol 88:149–159

    Article  Google Scholar 

  • Collins P (2008) Isolating and estimating undifferenced GPS integer ambiguities. Proceedings of ION National Technical Meeting, 28–30 September, San Diego, CA

  • DeMets C, Mattioli GS, Jansma P, Rogers R, Tenorios C, Turner HL (2007) Present motion and deformation of the Caribbean plate: constraints from new GPS geodetic measurements from Honduras and Nicaragua.In: Mann P (ed) Geologic and Tectonic Development of the Caribbean Plate in Northern Central America, Geological Society of America Special Paper 428:21–36. doi:10.1130/2007.2428(02)

  • Dong D, Bock Y (1989) GPS network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966

    Article  Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of Global Navigation Satellite Systems. J Geophys Res 83:191–198

    Google Scholar 

  • Eckl MC, Snay RA, Soler T, Cline MW, Mader GL (2001) Accuracy of GPS-derived relative positions as a function of interstation distance and observing-session duration. J Geophys Res 75(12):633–640

    Google Scholar 

  • Firuzabadi D, King RW (2011) GPS precision as a function of session duration and reference frame using multi-point software. GPS Solutions 16(2):191–196. doi:10.1007/s10291-011-0218-8

    Article  Google Scholar 

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2007) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geophys Res 82(7):389–399

    Google Scholar 

  • Geng J, Meng X, Dodson AH, Teferle FN (2010) Integer ambiguity resolution in precise point positioning: method comparison. J Geophys Res 84:569–581. doi:10.1007/s00190-010-0399-x

    Google Scholar 

  • Geng J, Teferle FN, Shi C, Meng X, Dodson AH, Liu J (2009) Ambiguity resolution in precise point positioning with hourly data. GPS Solution 13(4):263–270

    Article  Google Scholar 

  • Gili JA, Corominas J, Rius J (2000) Using Global Positioning System techniques in landslide monitoring. Eng Geol 55(3):167–192

    Article  Google Scholar 

  • Goad C (1985) Precise relative positioning determination using global positioning system carrier phase measurements in a nondifferenced mode. Proc., 1st Int. Symp. on Precise Positioning System with the Global Positioning System, U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Silver Spring, MD, 347–356

  • Grindlay N, Abrams L J, del Greco L (2005) Toward and integrated understanding of Holocene fault activity in western Puerto Rico: Constraints from high-resolution seismic and sidescan sonar data. In: Mann P (ed) Active Tectonics and Seismic Hazards of Puerto Rico, the Virgin Islands and Offshore Areas, GSA Special Paper 385, p. 139–160

  • Grinter T, Roberts C (2011) Precise point positioning: where are we now? International Global Navigation Satellite Systems Society IGNSS Symposium 2011, Sydney, Australia, 15–17 November, 2011, 15pp http://www.gmat.unsw.edu.au/snap/publications/grinter&roberts2011a.pdf. Accessed 1 Jun 2013)

  • Hastaoglu KO, Sanli DU (2011) Monitoring Koyulhisar landslide using rapid static GPS: a strategy to remove biases from vertical velocities. Nature Hazards 58(3):1275–1294

    Article  Google Scholar 

  • Heflin M, Bertiger WI, Blewitt G, Freedman A, Hurst K, Lichten SM, Lindqwister UJ, Vigue Y, Webb F, Yunck T, Zumberge J (1992) Global Geodesy using GPS without fiducial sites. Geophys Res Lett 19(2):131–134

    Article  Google Scholar 

  • Herring T., King RW, McCluskey SM (2009) Introduction to GAMIT/GLOBK, release 10.35. Mass Instit of Tech, Cambridge

  • Huérfano V, von Hillebrandt-Andrade C, Báez-Sánchez G (2005) Microseismic activity reveals two stress regimes in southwestern Puerto Rico. In: Mann P (ed) Active tectonics and seismic hazards of Puerto Rico, the Virgin Islands and Offshore areas. GSA Special Paper 385:81–101

  • Jansma PE, Mattioli GS (2005) GPS results from Puerto Rico and the VirginIslands: Constraints on tectonic setting and rates of active faulting. In: Mann P (ed) Active tectonics and seismic hazards of Puerto Rico, the Virgin Islands, and offshore areas. Geological Society of America, Special Paper 385:13–30

  • Jansma PE, Mattioli GS, Lopez A, DeMets C, Dixon T, Mann P, Calais E (2000) Neotectonics of Puerto Rico and the Virgin Islands, northeastern Caribbean, from GPS geodesy. Tectonics 19:1021–1037

    Article  Google Scholar 

  • Jibson RW (1986) Evaluation of landslide hazards resulting from the 5–8 October 1985 storm in Puerto Rico. U.S. Geological Survey Open-File Report, 86–26

  • Jibson RW (1989) Debris flows in southern Puerto Rico. Geol Soc Am, Special paper 236:29–55

    Article  Google Scholar 

  • Kedar S, Hajj G, Wilson B, Heflin M (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16):1829. doi:10.1029/2003GL017639

    Article  Google Scholar 

  • Kouba J (2005) A possible detection of the 26 December 2004 great Sumatra-Andaman Islands earthquake with solution products of the int. GNSS service. Stud Geophys Geod 49(4):463–483

    Article  Google Scholar 

  • Kouba J, Springer T (2001) New IGS station and satellite clock combination. GPS Solution 4(4):31–36

    Article  Google Scholar 

  • Laurichesse D, Mercier F (2007) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. Proceedings of ION-GNSS-2007, Fort Worth, Texas, 25–28 September, 839–848

  • Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination navigation. J Inst Navig 56(2):135–149

    Google Scholar 

  • Leandro RF, Langely RB, Santos MC (2008) GNSS data analysis in GAPS, the GPS analysis and positioning software, using IGS products. Proc., IGNSS Service Analysis Center Workshop 2008, Int. GNSS Service, Pasadena, CA

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics 56(5–6):394–415

    Article  Google Scholar 

  • Mann P, Calais E, Ruegg JC, DeMets C, Jansma P, Mattioli G (2002) Oblique collision in the northeastern Caribbean from GPS measurements and geological observations. Tectonics 21(6):1057. doi:10.1029/2001TC001304

    Article  Google Scholar 

  • Mann P, Prentice C, Hippolyte JC, Grindlay N, Abrams L, Lao-Dávila D (2005) Reconnaissance study of Late Quaternary faulting along Cerro Goden fault zone, western Puerto Rico. In: Mann P (ed) Active Tectonics and Seismic Hazards of Puerto Rico, the Virgin Islands and Offshore Areas, GSA Special Paper 385:115–138

  • Mann P, Taylor FW, Edwards RL, Ku TL (1995) Actively evolving microplate formation by oblique collision and sideways motion along strike-slip faults: an example from the northeastern Caribbean plate margin. Tectonophysics 246(1):1–69

    Article  Google Scholar 

  • Masson DG, Scanlon KM (1991) The neotectonic setting of Puerto Rico. Geol Soc Am Bull 103:144–154

    Article  Google Scholar 

  • Pearson C, McCaffrey R, Elliot JL, Snay R (2010) HDTP 3.0: software for copying with the coordinate changes associated with crustal motion. J Surv Eng 136(2):80–90

    Article  Google Scholar 

  • Pearson P, Snay R (2013) Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames. GPS Solution 17(1):1–17

    Article  Google Scholar 

  • Peyret M, Djamour Y, Rizza M, Ritz JF, Hutrez JE, Goudarzi MA, Nankali H, Chery J, Le Dortz K, Uri F (2008) Monitoring of the large slow Kahrod landslide in Alboz mountain range (Iran) by GPS and SAR interferometry. Eng Geol 100(3–4):131–141. doi:10.1016/j.enggeo.2008.02.013

    Article  Google Scholar 

  • Píriz R, Mozo A, Navarro P, Rodríguez D (2008) MagicGNSS: Precise GNSS products out of the box. Proc., ION GNSS 21st Int. Technical Meeting of the Satellite Division of the Institute of Navigation, Institute of Navigation, Manassas, VA, 1242–1251

  • Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements. GPS Solution 8(4):251–266

    Article  Google Scholar 

  • Rizos C, Janssen V, Roberts C, Grinter T (2012) Precise Point Positioning: Is the Era of differential GNSS positioning drawing to an end? TS09B, FIG Working Week 2012, Knowing to manage the territory, protect the environment, evaluate the culture heritage, Rome, Italy, 6–10, May 2012

  • Silva-Tulla F (1986) The October 1985 landslide at Barrio Mameyes. Ponce, National Academy, Washington, D.C.

    Google Scholar 

  • Snay RA (1999) Using HTDP software to transform spatial coordinates across time and between reference frames. Surveying and Land Information Science 59(1):15–25

    Google Scholar 

  • Snay RA (2003) Introducing two spatial reference frames for regions of the Pacific Ocean. Surveying and Land Information Science 63(1):5–12

    Google Scholar 

  • Soler T, Marshall J (2002) Rigorous transformation of variance–covariance matrices of GPS-derived coordinates and velocities. GPS Solution 6:76–90

    Article  Google Scholar 

  • Soler T, Snay RA (2004) Transforming positions and velocities between the International Terrestrial Reference Frame of 2000 and North American Datum of 1983. J Surv Eng 130(2):49–55

    Article  Google Scholar 

  • Tagliavini F, Mantovani M, Marcato G, Pasuto A, Silvano S (2007) Validation of landslide hazard assessment by means of GPS monitoring technique—a case study in the Dolomites (Eastern Alps, Italy). Nat Hazards Earth Syst Sci 7(1):185–193

    Article  Google Scholar 

  • Wang G (2011) GPS Landslide Monitoring: Single Base vs. Network Solutions—a case study based on the Puerto Rico and Virgin Islands Permanent GPS Network. J of Geodetic Sci 1(3):191–203

    Article  Google Scholar 

  • Wang G (2012) Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations. Landslides 9(1):117–130. doi:10.1007/s10346-011-0277-5

    Article  Google Scholar 

  • Wang G (2013a) Millimeter-accuracy GPS landslide monitoring using precise point positioning with single receiver phase ambiguity resolution: a case study in Puerto Rico. J of Geodetic Sci 3(1):22–31

    Article  Google Scholar 

  • Wang G (2013b) Teaching high-accuracy GPS to undergraduates using online processing services. J Geos Edu 61:202–212

    Google Scholar 

  • Wang G, Joyce J, Phillips D, Shrestha R, Carter W (2013a) Delineating and Defining the Boundaries of an Active Landslide in the Rainforest of Puerto Rico Using a Combination of Airborne and Terrestrial LIDAR Data. Landslides x(x):xxx-xxx. doi:10.1007/s10346-013-0400-x (online first)

  • Wang G, Phillips D, Joyce J, Rivera FO (2011) The integration of TLS and continuous GPS to study landslide deformation: a case study in Puerto Rico. J Geodetic Sci 1(1):25–34. doi:10.2478/v10156-010-0004-5

    Article  Google Scholar 

  • Wang G, Soler T (2012) OPUS for horizontal subcentimeter-accuracy landslide monitoring: case study in the Puerto Rico and Virgin Islands region. J Surv Eng 133(3):143–153. doi:10.1061/(ASCE)SU.1943-5428.0000079

    Article  Google Scholar 

  • Wang G, Yu J, Ortega J, Saenz G, Burrough T, Neill R (2013b) A Stable Reference Frame for Ground Deformation Study in the Houston Metropolitan Area, Texas. J of Geodetic Sci xxx-xxx (in press)

  • Webb FH, Zumberge JF (1997) An introduction to GIPSY/OASIS II. JPL Publication D-11088

  • Zumberge J, Heflin M, Jefferson D, Watkins M, Webb F (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–5017

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Jet Propulsion Laboratory for making available the GIPSY OASIS software, together with precise GPS orbit, clock solutions, and the WLPB estimates derived from the International GNSS Service (IGS) network. The authors appreciate the developers of the GAMIT/GLOBK for opening the source code. The first author thanks Dr. Robert King and Dr. Thomas Herring at MIT for explaining the details of Helmert transformation employed in the GAMIT/GLOBK package. This study was funded by an NSF CAREER award (EAR-1242383) and the NSF COCONET project (EAR-1042906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoquan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Kearns, T.J., Yu, J. et al. A stable reference frame for landslide monitoring using GPS in the Puerto Rico and Virgin Islands region. Landslides 11, 119–129 (2014). https://doi.org/10.1007/s10346-013-0428-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-013-0428-y

Keywords

Navigation