Skip to main content
Log in

Unfavourable microsites, competing vegetation and browsing restrict post-disturbance tree regeneration on extreme sites in the Northern Calcareous Alps

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Changing natural disturbance regimes threaten forest functions in the Northern Calcareous Alps, with steep, sun-exposed sites on shallow soils at particular risk due to inhibited recovery. Natural tree regeneration after severe disturbances may fail due to extreme microclimate, dense layers of competing understorey vegetation and herbivory. In order to gain insight into regeneration patterns and dynamics, chronosequences of disturbed forest sites were selected along a longitudinal section of the Austrian Northern Calcareous Alps. Regeneration densities of trees, cover of competing vegetation and microsite characteristics were recorded on a total of 19 disturbed sites and in the respective adjacent forest stands. Although high densities of germinants and small seedlings (≤0.1 m) were recorded in the forest stands, recruitment establishment (trees >0.1 m) frequently failed on both disturbed sites and adjacent stands. In fact, half of the disturbed sites were found to be without sufficient regeneration and no significant increase of regeneration density was detected with time since disturbance. Overall, regeneration densities reflect a very critical situation along the disturbance chronosequence. Even if seedling banks are composed of individuals smaller than 0.1 m, seedling mortality is high. General linear mixed models revealed positive effects of convex microsites and thick organic layers on Picea abies (L.) Karst. establishment, while dense litter and grass cover impaired spruce regeneration. Regeneration of other tree species was scarce. The results corroborate the urgent need for establishing seedling banks of larger individuals (>0.1 m) and for reducing ungulate browsing. They also underline the need for comprehensive long-term studies to better understand the dynamic processes, driving resilience of disturbed sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ammer C (1996) Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. For Ecol Manage 88(1–2):43–53

    Article  Google Scholar 

  • Attiwill PM (1994) The disturbance of forest ecosystems: the ecological basis for conservative management. For Ecol Manage 63(2):247–300

    Article  Google Scholar 

  • Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57(3):287–301

    Article  Google Scholar 

  • Baier R, Ettl R, Hahn C, Göttlein A (2006) Early development and nutrition of Norway spruce (Picea abies (L.) Karst.) seedlings on different seedbeds in the Bavarian limestone Alps—a bioassay. Ann For Sci 63:339–348

    Article  CAS  Google Scholar 

  • Baier R, Meyer J, Göttlein A (2007) Regeneration niches of Norway spruce (Picea abies [L.] Karst.) saplings in small canopy gaps in mixed mountain forests of the Bavarian Limestone Alps. Eur J For Res 126:11–22

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B (2012) lme4: linear mixed-effects models using S4 classes. R package version: 0.999999-0. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Beatty SW (1984) Influence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65:1406–1419

    Article  Google Scholar 

  • Bochter R, Neuerburg W, Zech W (1981) Humus und Humusschwund im Gebirge. Forschber 2, Natlpark Berchtesgaden

  • Bormann B, Spaltenstein H, McClellan M, Ugolini F, Cromack K Jr, Nay S (1995) Rapid soil development after windthrow disturbance in pristine forests. J Ecol 83:747–757

    Article  Google Scholar 

  • Brang P (1998) Early seedling establishment of Picea abies in small forest gaps in the Swiss Alps. Can J For Res 28(4):626–639

    Article  Google Scholar 

  • Brang P (2001) Resistance and elasticity: promising concepts for the management of protection forests in the European Alps. For Ecol Manage 145:107–119

    Article  Google Scholar 

  • Brang P, Duc P (2002) Zu wenig Verjüngung im Schweizer Gebirgs-Fichtenwald: Nachweis mit einem neuen Modellansatz. Schweiz Z Forstwes 153(6):219–227

    Article  Google Scholar 

  • Canham CD, Marks PL (1985) The response of woody plants to disturbance: Patterns of establishment and growth. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, pp 197–217

    Google Scholar 

  • Catovsky S, Bazzaz FA (2000) The role of resource interactions and seedling regeneration in maintaining a positive feedback in hemlock stands. J Ecol 88:100–112

    Article  Google Scholar 

  • Clark J, Beckage B, Camill P, Cleveland B, HilleRisLambers J, Lichter J, McLachlan J, Mohan J, Wyckoff P (1999) Interpreting recruitment limitation in forests. Am J Bot 86(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Clinton BD, Baker CR (2000) Catastrophic windthrow in the southern Appalachians: characteristics of pits and mounds and initial vegetation responses. For Ecol Manage 126(1):51–60

    Article  Google Scholar 

  • Coates KD (2002) Tree recruitment in gaps of various size, clearcuts and undisturbed mixed forest of interior British Columbia, Canada. For Ecol Manage 155:387–398

    Article  Google Scholar 

  • Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ (2001) Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. Bioscience 51:723–734

    Article  Google Scholar 

  • Darabant A, Rai PB, Tenzin K, Roder W, Gratzer G (2007) Cattle grazing facilitates tree regeneration in a conifer forest with palatable bamboo understory. For Ecol Manage 252(1–3):73–83

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88(3):528–534

    Article  Google Scholar 

  • Diaci J (2002) Regeneration dynamics in a Norway spruce plantation on a silver fir-beech forest site in the Slovenian Alps. For Ecol Manage 161:27–38

    Article  Google Scholar 

  • Diaci J, Pisek R, Boncina A (2005) Regeneration in experimental gaps of subalpine Picea abies forest in the Slovenian Alps. Eur J For Res 124:29–36

    Article  Google Scholar 

  • Dorren LKA, Berger F, Imeson AC, Maier B, Rey F (2004) Integrity, stability and management of protection forests in the European Alps. For Ecol Manage 195:165–176

    Article  Google Scholar 

  • Dovčiak M, Hrivnák R, Ujházy K, Gömöry D (2008) Seed rain and environmental controls on invasion of Picea abies into grassland. Plant Ecol 194(1):135–148

    Article  Google Scholar 

  • Eriksson O, Ehrlén J (1992) Seed and microsite limitation of recruitment in plant populations. Oecologia 91:360–364

    Article  Google Scholar 

  • FAO (IUSS Working Group WRB) (2006) World reference base for soil resources. World soil resources reports 103. FAO, Rome

    Google Scholar 

  • Firm D, Nagel TA, Diaci J (2009) Disturbance history and dynamics of an old-growth mixed species mountain forest in the Slovenian Alps. For Ecol Manage 257(9):1893–1901

    Article  Google Scholar 

  • Fischer A, Fischer HS (2012) Individual-based analysis of tree establishment and forest stand development within 25 years after wind throw. Eur J For Res 131(2):493–501

    Article  Google Scholar 

  • Fischer A, Jehl H (1999) Vegetationsentwicklung auf Sturmwurfflächen im Nationalpark Bayerischer Wald aus dem Jahre 1983. Forstl Forschber Münch 176:93–101

    Google Scholar 

  • Franklin JF, Spies TA, Pelt RV, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K, Chen J (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manage 155:399–423

    Article  Google Scholar 

  • Frelich LE (2002) Forest dynamics and disturbance regimes: studies from temperate evergreen-deciduous forests. Cambridge University Press, New York

    Book  Google Scholar 

  • Gardiner B, Blennow K, Carnus JM, Fleischer P et al (2010) Destructive storms in European Forests: past and forthcoming impacts. Final report to European Commission—DG Environment

  • George LO, Bazzaz FA (1999) The fern understory as an ecological filter: emergence and establishment of canopy-tree seedlings. Ecology 80(3):833–845

    Article  Google Scholar 

  • Glatzel G (1968) Probleme der Beurteilung der Ernährungssituation von Fichte auf Dolomitböden. Mitt Österr Bodenkdl Ges 12:14–46

    Google Scholar 

  • Gratzer G, Canham C, Dieckmann U, Fischer A, Iwasa Y, Law R, Lexer MJ, Sandmann H, Spies TA, Splechtna BE, Szwagrzyk J (2004) Spatio-temporal development of forests—current trends in field methods and models. Oikos 107(1):3–15

    Article  Google Scholar 

  • Gray AN, Spies TA (1997) Microsite controls on tree seedling establishment in conifer forest canopy gaps. Ecology 78(8):2458–2473

    Article  Google Scholar 

  • Greene DF, Zasada JC, Sirois L, Kneeshaw D, Morin H, Charron I, Simard MJ (1999) A review of the regeneration dynamics of North American boreal forest tree species. Can J For Res 29(6):824–839

    Article  Google Scholar 

  • Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52(1):107–145

    Article  Google Scholar 

  • Gunderson LH (2000) Ecological resilience—in theory and application. Annu Rev Ecol Syst 31:425–439

  • Guo D, Mou P, Jones R, Mitchell R (2004) Spatio-temporal patterns of soil available nutrients following experimental disturbance in a pine forest. Oecologia 138(4):613–621

    Article  PubMed  Google Scholar 

  • Hanssen KH (2003) Natural regeneration of Picea abies on small clear-cuts in SE Norway. For Ecol Manage 180(1–3):199–213

    Article  Google Scholar 

  • Harflinger O, Knees G (1999) Klimahandbuch der österreichischen Bodenschätzung. Österr Bodenkdl Ges, Vienna

    Google Scholar 

  • Holgén P, Hånell B (2000) Performance of planted and naturally regenerated seedlings in Picea abies-dominated shelterwood stands and clearcuts in Sweden. For Ecol Manage 127:129–138

    Article  Google Scholar 

  • Hughes JW, Bechtel DA (1997) Effect of distance from forest edge on regeneration of red spruce and balsam fir in clearcuts. Can J For Res 27:2088–2096

    Article  Google Scholar 

  • Hunziker U, Brang P (2005) Microsite patterns of conifer seedling establishment and growth in a mixed stand in the southern Alps. For Ecol Manage 210(1):67–79

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5(7):365–374

    Article  Google Scholar 

  • Johnson EA, Fryer GI (1992) Physical characterization of seed microsites—movement on the ground. J Ecol 80:823–836

    Article  Google Scholar 

  • Katzensteiner K (2000) Wasser- und Stoffhaushalt von Waldökosystemen in den Nördlichen Kalkalpen. Forstliche Schriftenreihe 15. Österr Ges F Waldökosystemforschung und Experimentelle Baumforschung, Universität für Bodenkultur, Wien

  • Katzensteiner K (2003) Effects of harvesting on nutrient leaching in a Norway spruce (Picea abies Karst.) ecosystem on a Lithic Leptosol in the Northern Limestone Alps. Plant Soil 250:59–73

    Article  CAS  Google Scholar 

  • Keeton WS, Franklin JF (2005) Do remnant old-growth trees accelerate rates of succession in mature Douglas-fir forests? Ecol Monogr 75(1):103–118

    Article  Google Scholar 

  • Kilian W, Müller F, Starlinger F (1994) Die forstlichen Wuchsgebiete Österreichs. Eine Naturraumgliederung nach waldökologischen Gesichtspunkten. Report, vol 82. Austrian Research Centre for Forests, Vienna

  • Kralik M (2001) Strategie zum Schutz der Karstwassergebiete in Österreich. BE-189. Umweltbundesamt (Environment Agency Austria), Wien

  • Krueger LM, Peterson CJ (2006) Effects of white-tailed deer on Tsuga canadensis regeneration: evidence of microsites as refugia from browsing. Am Midl Nat 156(2):353–362

    Article  Google Scholar 

  • Kulakowski D, Matthews C, Jarvis D, Veblen TT (2013) Compounded disturbances in sub-alpine forests in western Colorado favour future dominance by quaking aspen (Populus tremuloides). J Veg Sci 24(1):168–176

    Article  Google Scholar 

  • Kupferschmid AD, Bugmann H (2005) Effect of microsites, logs and ungulate browsing on Picea abies regeneration in a mountain forest. For Ecol Manage 205:251–265

    Article  Google Scholar 

  • Kutter M, Gratzer G (2006) Neue Methoden zur Abschätzung der Samenverbreitungsdistanzen von Waldbäumen am Beispiel der Verbreitung von Picea abies, Abies alba und Fagus sylvatica. Austrian J For Sci (Cent bl gesamte Forstwes) 123:103–120

    Google Scholar 

  • Kuuluvainen T, Kalmari R (2003) Regeneration microsites of Picea abies seedlings in a windthrow area of a boreal old-growth forest in southern Finland. Ann Bot Fenn 40:401–413

    Google Scholar 

  • Lafond V, Lagarrigues G, Cordonnier T, Courbaud B (2014) Uneven-aged management options to promote forest resilience for climate change adaptation: effects of group selection and harvesting intensity. Ann For Sci 71(2):173–186

    Article  Google Scholar 

  • Larcher W (2003) Physiological plant ecology—ecophysiology and stress physiology of functional groups. Springer, Berlin

    Google Scholar 

  • Li MH, Yang J, Kräuchi N (2003) Growth responses of Picea abies and Larix decidua to elevation in subalpine areas of Tyrol, Austria. Can J For Res 33:653–662

    Article  Google Scholar 

  • Lieffers VJ, MacDonald SE, Hogg EH (1993) Ecology of and control strategies for Calamagrostis canadensis in boreal forest sites. Can J For Res 23:2070–2077

    Article  Google Scholar 

  • Lienert GA (1978) Verteilungsfreie Methoden in der Biostatistik. Verlag Hain, Meisenheim am Glan

    Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage 259(4):698–709

    Article  Google Scholar 

  • Mayer H (1980/1981) Zur Optimierung ökologischer, waldbaulicher und ökonomischer Faktoren in der Forstwirtschaft Österreichs. Int Holzmarkt 6–8, 12–19

  • Moloney KA, Levin SA (1996) The effects of disturbance architecture on landscape-level population dynamics. Ecology 77:375–394

  • Moser B, Schütz M, Hindenlang KE (2008) Resource selection by roe deer: are windthrow gaps attractive feeding places? For Ecol Manage 255(3–4):1179–1185

    Article  Google Scholar 

  • Muller-Landau HC, Wright SJ, Calderon O, Hubbell SP, Foster RB (2002) Assessing recruitment limitation: concepts, methods and case-studies from a tropical forest. In: Levey DJ, Silva WR, Galetti M (eds) Seed dispersal and frugivory: ecology, evolution and conservation. CABI, Wallingford, pp 35–53

    Google Scholar 

  • Nagel TA, Svoboda M, Diaci J (2006) Regeneration patterns after intermediate wind disturbance in an old-growth Fagus–Abies forest in southeastern Slovenia. For Ecol Manage 226(1–3):268–278

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15(7):278–285

    Article  PubMed  Google Scholar 

  • Ott E, Frehner M, Frey HU, Lüscher P (1997) Gebirgsnadelwälder. Ein praxisorientierter Leitfaden für eine standortgerechte Waldbehandlung [Coniferous Mountain Forests. Practical guidelines for site-adapted silvicultural treatments]. Paul Haupt, Wien

  • Pardos M, Ruiz del Castillo J, Cañellas I, Montero G (2005) Ecophysiology of natural regeneration of forest stands in Spain. Invest Agrar Sist Recur For 14(3):434–445

    Article  Google Scholar 

  • Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando

    Google Scholar 

  • Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22(15–16):1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Prietzel J, Ammer C (2007) Montane Bergmischwälder der Bayerischen Kalkalpen: Reduktion der Schalenwilddichte steigert nicht nur den Verjüngungserfolg, sondern auch die Bodenfruchtbarkeit. Allg Forst- u J-Ztg 179:105–113

    Google Scholar 

  • Priewasser K (2013) Factors influencing tree regeneration after windthrow in Swiss Forests. Dissertation, University of Zurich

  • Reimoser F, Gossow H (1996) Impact of ungulates on forest vegetation and its dependence on the silvicultural system. For Ecol Manage 88(1–2):107–119

    Article  Google Scholar 

  • Royo AA, Carson WP (2006) On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can J For Res 36:1345–1362

    Article  Google Scholar 

  • Sakals ME, Innes JL, Wilford DJ, Sidle RC, Grant GE (2006) The role of forests in reducing hydrogeomorphic hazards. For Snow Landsc Res 80(1):11–22

    Google Scholar 

  • Šamonil P, Antolík L, Svoboda M, Adam D (2009) Dynamics of windthrow events in a natural fir-beech forest in the Carpathian mountains. For Ecol Manage 257(3):1148–1156

    Article  Google Scholar 

  • Schaetzl RJ, Johnson DL, Burns SF, Small TW (1989) Tree uprooting: review of terminology, process, and environmental implications. Can J For Res 19(1):1–11

    Article  Google Scholar 

  • Schaetzl RJ, Burns SF, Small TW, Johnson DL (1990) Tree uprooting: review of types and patterns of soil disturbance. Phys Geogr 11(3):277–291

    Google Scholar 

  • Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9(11):1620–1633

    Article  Google Scholar 

  • Scherzinger W (1996) Naturschutz im Wald: Qualitätsziel einer dynamischen Waldentwicklung. Praktischer Naturschutz, Eugen Ulmer, Stuttgart-Hohenheim

    Google Scholar 

  • Schodterer H (2011) Verjüngung im österreichischen Wald: Defizite im Schutzwald. BFW-Praxisinformation 24:10–14

    Google Scholar 

  • Schönenberger W (2002) Post windthrow stand regeneration in Swiss mountain forests: the first ten years after the 1990 storm Vivian. For Snow Landsc Res 77:61–80

    Google Scholar 

  • Schönenberger W, Noack A, Thee P (2005) Effect of timber removal from windthrow slopes on the risk of snow avalanches and rockfall. For Ecol Manage 213(1–3):197–208

    Article  Google Scholar 

  • Schubert G (2000) Water resources—drinking water. Mitt Österr Geol Ges 92:295–311

    Google Scholar 

  • Schupp EW (1995) Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. Am J Bot 82:399–409

  • Seidl R, Schelhaas M-J, Lexer MJ (2011a) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biol 17(9):2842–2852

    Article  Google Scholar 

  • Seidl R, Rammer W, Lexer M (2011b) Climate change vulnerability of sustainable forest management in the Eastern Alps. Clim Change 106(2):225–254

    Article  Google Scholar 

  • Senn J, Wasem U, Odermatt O (2002) Impact of browsing ungulates on plant cover and tree regeneration in windthrow areas. For Snow Landsc Res 77(1/2):161–170

    Google Scholar 

  • Simon A, Gratzer G, Sieghardt M (2011) The influence of windthrow microsites on tree regeneration and establishment in an old growth mountain forest. For Ecol Manage 262(7):1289–1297

    Article  Google Scholar 

  • Splechtna BE, Gratzer G (2005) Natural disturbances in Central European forests: approaches and preliminary results from Rothwald, Austria. For Snow Landsc Res 79:57–67

    Google Scholar 

  • Streit K, Wunder J, Brang P (2009) Slit-shaped gaps are a successful silvicultural technique to promote Picea abies regeneration in mountain forests of the Swiss Alps. For Ecol Manage 257(9):1902–1909

    Article  Google Scholar 

  • Suarez ML, Ghermandi L, Kitzberger T (2004) Factors predisposing episodic drought-induced tree mortality in Nothofagus—site, climatic sensitivity and growth trends. J Ecol 92(6):954–966

    Article  Google Scholar 

  • Svoboda M, Fraver S, Janda P, Bače R, Zenáhlíková J (2010) Natural development and regeneration of a Central European montane spruce forest. For Ecol Manage 260(5):707–714

    Article  Google Scholar 

  • Szwagrzyk J, Szewczyk J, Bodziarczyk J (2001) Dynamics of seedling banks in beech forest: results of a 10-year study on germination, growth and survival. For Ecol Manage 141(3):237–250

    Article  Google Scholar 

  • Thom D, Seidl R, Steyrer G, Krehan H, Formayer H (2013) Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For Ecol Manage 307:293–302

    Article  Google Scholar 

  • Titus BD, Roberts BA, Deering KW (1998) Nutrient removals with harvesting and by deep percolation from white birch (Betula papyrifera [Marsh.]) sites in central Newfoundland. Can J Soil Sci 78(1):127–137

    Article  CAS  Google Scholar 

  • Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91(10):2833–2849

    Article  PubMed  Google Scholar 

  • Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1(6):511–523

    Article  Google Scholar 

  • Ulanova NG (2000) The effects of windthrow on forests at different spatial scales: a review. For Ecol Manage 135:155–167

    Article  Google Scholar 

  • Vacik H, Lexer MJ (2001) Application of a spatial decision support system in managing the protection forests of Vienna for sustained yield of water resources. For Ecol Manage 143(1):65–76

    Article  Google Scholar 

  • Vázquez-Yanes C, Orozco-Segovia A, Rincón E, Sánchez-Coronado ME, Huante P, Toledo JR, Barradas VL (1990) Light beneath the litter in a tropical forest: effect on seed germination. Ecology 71:1952–1958

    Article  Google Scholar 

  • von Arx G, Dobbertin M, Rebetez M (2012) Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric For Meteorol 166:144–155

    Article  Google Scholar 

  • Wohlgemuth T, Kull P, Wüthrich H (2002) Disturbance of microsites and early tree regeneration after windthrow in Swiss mountain forests due to the winter storm Vivian 1990. For Snow Landsc Res 77(1/2):17–47

    Google Scholar 

  • Wright EF, Coates KD, Bartemucci P (1998) Regeneration from seed of six tree species in the interior cedar-hemlock forests of British Columbia as affected by substrate and canopy gap position. Can J For Res 28(9):1352–1364

    Article  Google Scholar 

  • Young TP, Peffer E (2010) “Recalcitrant understory layers” revisited: arrested succession and the long life-spans of clonal mid-successional species. Can J For Res 40(6):1184–1188

    Article  Google Scholar 

  • ZAMG (2013) Climate data for Austria between 1961–1990. Central Institute for Meteorology and Geodynamics. http://www.zamg.ac.at/cms/de/klima/klimauebersichten/klimamittel-1971-2000. Accessed 14 Dec 2013

Download references

Acknowledgments

We thank the provincial governments of Tyrol, Salzburg, Upper Austria, Styria and Vienna and the Austrian Federal Forests Inc., (Österreichische Bundesforste AG) for financial support, assistance with the identification of suitable sites and for providing site history information. The project was jointly funded by the European Regional Development Fund of the European Union and national sources. In particular, we would like to acknowledge substantial contributions by Werner Fleck, Dieter Stöhr, Hubert Gugganig, Florian Linko, Thomas Hofer and Hermann Haubenberger. We are further obliged to Sangay Dorji and Christian Köfler for the great team work during data collection. Many thanks to Otto Eckmüllner and Birgit Reger for help with data editing and Bradley Matthews with the English. Finally, we thank two anonymous reviewers who helped to improve this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Pröll.

Additional information

Communicated by C. Ammer.

Appendix

Appendix

See Tables 4, 5 and 6.

Table 4 Density of coniferous (CT) and deciduous trees (DT) per hectare in forest stands (fixed plots of plot clusters 1 and 5), referring to individuals ≤0.10 m and >0.10 m (0.11–5.00 m)
Table 5 Density of coniferous (CT) and deciduous trees (DT) per hectare on disturbed sites (fixed plots of plot clusters 2–4), referring to individuals ≤0.10 m and >0.10 m (0.11–5.00 m)
Table 6 Characteristics of sites situated in the Northern Calcareous Alps, Austria, in mountainous protection forests in the (I) Lechtal Alps, (II) Salzkammergut Mountains and (III) Rax–Schneeberg Group (III) at 900–1,630 m.a.s.l.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pröll, G., Darabant, A., Gratzer, G. et al. Unfavourable microsites, competing vegetation and browsing restrict post-disturbance tree regeneration on extreme sites in the Northern Calcareous Alps. Eur J Forest Res 134, 293–308 (2015). https://doi.org/10.1007/s10342-014-0851-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-014-0851-1

Keywords

Navigation