Skip to main content

Advertisement

Log in

Applying cost-distance analysis for forest disease risk mapping: Phytophthora austrocedrae as an example

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Cost-distance model analyzes the relative difficulty in reaching each spot of the landscape for the object or species under study. It calculates the effective distance, which is the Euclidian distance modified by the friction to movement through different landscape elements. This work deals with the application of cost-distance analysis in forest pathology, considering Austrocedrus chilensis root rot caused by Phytophthora austrocedrae as an example. In this case, cost-distance analysis was used to determine the relative difficulty for the pathogen to reach healthy forest patches from the patches that are presently diseased. Friction values were assigned on the basis of abiotic conditions, biological characteristics of the pathogen and host presence. Since cattle may be a vehicle for Phytophthora dispersion, three hypothetical situations of ranching were considered. Cost-distance application resulted useful to define minimum risk areas for conservation purposes. In the study case, minimum risk area strongly varied in response to cattle presence. This study provided valuable information for A. chilensis disease management and showed one of the broad applications of cost-distance analysis in forestry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriaensen F, Chardona J, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64(4):233–247

    Article  Google Scholar 

  • Baccalá N, Rosso P, Havrylenko M (1998) Austrocedrus chilensis mortality in the Nahuel Huapi National Park (Argentina). For Ecol Manag 109:261–269

    Article  Google Scholar 

  • Carabelli F (2004) Quantitative analysis of forest fragmentation in Patagonia, Argentina. In: Sano M, Miyamoti A, Sugimura K (eds) Proceedings IUFRO international workshop of landscape ecology: conservation and management of fragmented forest landscapes. FFPRI, Ibaraki

    Google Scholar 

  • Colquhoun IJ, Hardy GE, St J (2000) Managing the risk of Phytophthora root and collar rot during bauxite mining in the Eucalyptus marginata (Jarrah) Forest of Western Australia. Plant Dis 84(2):116–127

    Article  Google Scholar 

  • Davidson JM, Wickland AC, Patterson HA, Falk KR, Rizzo DM (2005) Transmission of Phytophthora ramorum in mixed evergreen forest in California. Phytopathology 95:587–596

    Article  PubMed  Google Scholar 

  • Ellis AM, Václavík T, Meentemeyer RK (2010) When is connectivity important? A case study of the spatial pattern of sudden oak death. Oikos 119(3):485–493

    Article  Google Scholar 

  • Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliot K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thompson J, Von Holle B, Webster JR (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486

    Article  Google Scholar 

  • Ferrari J, Lookingbill T (2009) Initial conditions and their effect on invasion velocity across heterogeneous landscapes. Biol Invasions 11(6):1247–1258

    Article  Google Scholar 

  • Fieldes M, Perrot KW (1966) The nature of allophane in soils part 3: rapid field and laboratory test for allophane. N Z J Sci 9:623–629

    CAS  Google Scholar 

  • Gibbs JN, Lipscombe MA, Peace AJ (1999) The impact of Phytophthora disease on riparian populations of common alder (Alnus glutinosa) in southern Britain. Eur J For Pathol 29(1):39–50

    Article  Google Scholar 

  • González López JJ (2008) Propuesta metodológica para el análisis de la pérdida de conectividad debido a planes y proyectos en un espacio de la Red Natura 2000: La propuesta ZEPA “Campiñas de Sevilla”. Fondo documental del Congreso Nacional del Medio Ambiente CONAMA 9, Comunicaciones técnicas. http://www.conama9.org. Accessed 1 Dic 2009

  • Greslebin AG, Hansen EM (2010) Pathogenicity of Phytophthora austrocedrae on Austrocedrus chilensis and its relation with “Mal del Ciprés” in Patagonia. Plant Path 59(4):604–612

    Article  Google Scholar 

  • Hansen EM (1999) Disease and diversity in forest ecosystems. Australas Plant Pathol 28:313–319

    Article  Google Scholar 

  • Hansen EM, Goheen DJ, Jules ES, Ullian B (2000) Managing Port-Orford-Cedar and the introduced pathogen Phytophthora lateralis. Plant Dis 84:4–14

    Article  Google Scholar 

  • Hastings A, Cuddington K, Davies K, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore BA, Taylor C, Thomson D (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101

    Article  Google Scholar 

  • Jules ES, Kauffman MJ, Ritts WD, Carroll AL (2002) Spread of an invasive pathogen over a variable landscape: a nonnative root rot on Port Orford cedar. Ecology 83:3167–3181

    Article  Google Scholar 

  • La Manna L, Rajchenberg M (2004a) The decline of Austrocedrus chilensis forests in Patagonia, Argentina: soil features as predisposing factors. For Ecol Manag 190:345–357

    Article  Google Scholar 

  • La Manna L, Rajchenberg M (2004b) Soil properties and Austrocedrus chilensis decline in Central Patagonia, Argentina. Plant Soil 263:29–41

    Article  Google Scholar 

  • La Manna L, Carabelli F, Gómez M, Matteucci SD (2008) Disposición espacial de parches de Austrocedrus chilensis con síntomas de defoliación y mortalidad en el Valle 16 de Octubre (Chubut, Argentina). Bosque 29(1):23–32

    Google Scholar 

  • La Manna L, Mateucci SD, Kitzberger T (2012) Modelling Phytophthora disease risk in Austrocedrus chilensis forests of Patagonia. Eur J For Res 131(2):323–337

    Article  Google Scholar 

  • Loo JA (2009) Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol Invasions 11:81–96

    Article  Google Scholar 

  • McDougall KL, Hardy GE, St J, Hobbs RJ (2002) Distribution of Phytophthora cinnamomi in the northern jarrah (Eucalyptus marginata) forest of Western Australia in relation to dieback age and topography. Aust J Bot 50:107–114

    Article  Google Scholar 

  • Meentemeyer R, Rizzo D, Mark W, Lotz E (2004) Mapping the risk of establishment and spread of sudden oak death in California. For Ecol Manag 200:195–214

    Article  Google Scholar 

  • Meentemeyer RK, Anacker B, Mark W, Rizzo D (2008a) Early detection of emerging forest disease using dispersal estimation and ecological niche modeling. Ecol Appl 18:377–390

    Article  PubMed  Google Scholar 

  • Meentemeyer RK, Rank NE, Shoemaker DA, Oneal CB, Wickland AC, Frangioso KM, Rizzo DM (2008b) Impact of sudden oak death on tree mortality in the Big Sur ecoregion of California. Biol Invasions 10:1243–1255

    Article  Google Scholar 

  • Moller B, Nielsen P (2007) Analysing transport costs of Danish forest wood chip resources by means of continuous cost surfaces. Biomass Bioenergy 31(5):291–298

    Article  Google Scholar 

  • Poulsom L, Griffiths M, Broome A, Mayle B (2005) Identification of priority woodlands for red squirrel conservation in North and Central Scotland: a preliminary analysis. Scottish Natural Heritage Commissioned Report No. 089 (ROAME No. F02AC334). http://www.highlandredsquirrel.co.uk/pw.htm. Accessed 1 Dic 2009

  • Rizzo DM, Garbelotto M, Davidson JM, Slaughter GW, Koike ST (2002) Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis 86:205–214

    Article  Google Scholar 

  • Roth LF, Harvey RD, Kliejunas JT (1987) Port-Orford-cedar root disease. United States Department of Agriculture Forest Service Pacific Northwest Region R6 FPM PR 010 91. www.fs.fed.us/r6/nr/fid/fidls/poc.htm. Accessed 1 Mar 2009

  • Smolik MG, Dullinger S, Essl F, Kleinbauer I, Leitner M, Peterseil J, Stadler LM, Vogl G (2010) Integrating species distribution models and interacting particle systems to predict the spread of an invasive alien plant. J Biogeog 37(3):411–422

    Article  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Van Staden V, Erasmus B, Roux J, Wingfield M, Van Jaarsveld A (2004) Modelling the spatial distribution of two important South African plantation forestry pathogens. For Ecol Manag 187:61–73

    Article  Google Scholar 

  • Veblen TT, Burns BR, Kitzberger T, Lara A, Villalba R (1995) The ecology of the conifers of southern South America. In: Enright NS, Hill RS (eds) Ecology of the southern conifers. Melbourne University Press, Melbourne, pp 120–155

    Google Scholar 

  • Venette RC, Cohen SD (2006) Potential climatic suitability for establishment of Phytophthora ramorum within the contiguous United States. For Ecol Manag 231:18–26

    Article  Google Scholar 

  • Walker S, Novaro A, Branch LC (2007) Functional connectivity defined through cost-distance and genetic analyses: a case study for the rock-dwelling mountain vizcacha (Lagidium viscacia) in Patagonia, Argentina. Landscape Ecol 22:1303–1314

    Article  Google Scholar 

  • Weste G, Marks GC (1987) The biology of Phytophthora cinnamomi in Australasian forests. Ann Rev Phytopath 25:207–229

    Article  Google Scholar 

  • Zobel DB, Roth LF, Hawk GM (1985) Ecology, pathology, and management of Port-Orford-cedar (Chamaecyparis lawsoniana). General Technical Report PNW-184. U.S. Department of Agriculture Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland

    Google Scholar 

Download references

Acknowledgments

We appreciate Los Alerces National Park for providing access to the study area. The authors are researches of the National Scientific and Technical Research Council (CONICET). This work was supported by CONICET, PIP 5660.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila La Manna.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Manna, L., Greslebin, A.G. & Matteucci, S.D. Applying cost-distance analysis for forest disease risk mapping: Phytophthora austrocedrae as an example. Eur J Forest Res 132, 877–885 (2013). https://doi.org/10.1007/s10342-013-0720-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-013-0720-3

Keywords

Navigation