Skip to main content

Advertisement

Log in

Functional connectivity defined through cost-distance and genetic analyses: a case study for the rock-dwelling mountain vizcacha (Lagidium viscacia) in Patagonia, Argentina

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Landscape connectivity can have profound consequences for distribution and persistence of populations and metapopulations. Evaluating functional connectivity of a landscape for a species requires a measure of dispersal rates through landscape elements at a spatial scale sufficient to encompass movement capabilities of individuals over the entire landscape. We evaluated functional connectivity for a rock-dwelling mammal, the mountain vizcacha (Lagidium viscacia), in northern Patagonia. Because of the strict association of mountain vizcachas with rocks, we hypothesized that connectivity for this species would be influenced by geology. We used molecular genetic estimates of gene flow to test spatially explicit models of connectivity created with GIS cost-distance analysis of landscape resistance to movement. We analyzed the spatial arrangement of cliffs with join counts and local k-function analyses. We did not capture and genotype individuals, but sampled at the population level through non-invasive collection of feces of mountain vizcachas. The model of landscape connectivity for mountain vizcachas based on geology was corroborated by the pattern of genetic structure, supporting the hypothesis that functional connectivity for mountain vizcachas is influenced by geology, particularly by the distribution of appropriate volcanic rocks. Analysis of spatial arrangement of cliffs indicated that occupied cliffs are clustered and confirmed that rivers act as barriers to dispersal for mountain vizcachas. Our methods could be used, within certain constraints, to study functional landscape connectivity in other organisms, and may be particularly useful for cryptic or endangered species, or those that are difficult or expensive to capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of “least-cost” modelling as a functional landscape model. Landsc Urban Plan 64:233–247

    Article  Google Scholar 

  • Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioural landscape ecology. Ecology 86:1988–1995

    Article  Google Scholar 

  • Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13:3601–3608

    Article  PubMed  CAS  Google Scholar 

  • Broquet T, Ray N, Petit E, Fryxell JM, Burel F (2006) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landsc Ecol 21:877–889

    Article  Google Scholar 

  • Chen DM, Getis A (1998) Point pattern analysis. Online program URL: http://www.nku.edu/∼longa/cgi-bin/cgi-tcl-examples/generic/ppa/ppa.cgi

  • Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion Ltd, London

    Google Scholar 

  • Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewison JM (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850

    Article  PubMed  CAS  Google Scholar 

  • D’Eon RG, Glenn SM, Parfitt I, Fortin M-J (2002) Landscape connectivity as a function of scale and organism vagility in a real forested landscape. Cons Ecol 6:10 [online] URL: http://www.consecol.org/vol6/iss2/art10

    Google Scholar 

  • Eastman JR (1989) Pushbroom algorithms for calculating distances in raster grids. Autocarto 9:288–297

    Google Scholar 

  • Ernest HB, Penedo MCT, May BP, Syvanen M, Boyce WM (2000) Molecular tracking of mountain lions in the Yosemite Valley region in California: genetic analysis using microsatellites and faecal DNA. Mol Ecol 9:433–441

    Article  PubMed  CAS  Google Scholar 

  • Ferreras P (2001) Landscape structure and asymmetrical inter-patch connectivity in a metapopulation of the endangered Iberian lynx. Biol Cons 100:125–136

    Article  Google Scholar 

  • Flagstad Ø, Røed K, Stacy JE, Jakobsen KS (1999) Reliable noninvasive genotyping based on excremental PCR of nuclear DNA purified with a magnetic bead protocol. Mol Ecol 8:879–883

    Article  PubMed  CAS  Google Scholar 

  • Gaggiotti O, Lange EO, Rassman K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Getis A, Franklin J (1987) Second-order neighborhood analysis of mapped point patterns. Ecology 68:473–477

    Article  Google Scholar 

  • Goodman S (1997) RST calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol Ecol 6:881–885

    Article  CAS  Google Scholar 

  • Goudet J (2000) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.1). Available from http://www.unil.ch/izea/softwares/fstat.html

  • Graham CH (2001) Factors influencing movement patterns of keel-billed toucans in a fragmented tropical landscape in southern Mexico. Cons Biol 15:1789–1798

    Article  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Assoc., Inc., Sunderland

    Google Scholar 

  • Hoeck HN (1982) Population dynamics, dispersal and genetic isolation in two species of hyrax (Heterohyrax brucei and Procavia johnstoni) on habitat islands in the Serengeti. Z Tierpsychol 59:177–210

    Google Scholar 

  • Jonsen ID, Bourchier RS, Roland J (2001) The influence of matrix habitat on Aphthona flea beetle immigration to leafy spurge patches. Oecologia 127:287–294

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassus smintheus (Papilionidae). Mol Ecol 8:1481–1495

    Article  PubMed  Google Scholar 

  • Knaapen JP, Scheffer M, Harms B (1992) Estimating habitat isolation in landscape planning. Landsc Urban Plan 23:1–16

    Article  Google Scholar 

  • León RJC, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Aust 8:125–144

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–19

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Mares MA, Lacher TE (1987) Ecological, morphological, and behavioral convergence in rock-dwelling mammals. In: Genoways H (ed) Current mammalogy, vol 1. Plenum Press, New York, pp 307–348

    Google Scholar 

  • Merriam G (1995) Movement in spatially divided populations: responses to landscape structure. In: Lidicker WZ (ed) Landscape approaches in mammalian ecology and conservation. University of Minnesota Press, Minneapolis, pp 64–77

    Google Scholar 

  • Michels E, Cottenie K, Neys L, De Gelas K, Coppin P, De Meester L (2001) Geographical and genetic distances among zooplankton populations in a set on interconnected ponds: a plea for using GIS modeling of the effective geographical distance. Mol Ecol 10:1929–1938

    Article  PubMed  CAS  Google Scholar 

  • Miller M (1997) Tools for population genetic analysis (TFPGA), Version 1.3. A Windows program for analysis of allozyme and molecular population genetic data. Software distributed by the author

  • Moilanen A, Niemenin M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Pither J, Taylor PD (1998) An experimental assessment of landscape connectivity. Oikos 83:166–174

    Article  Google Scholar 

  • Pope LC, Sharp A, Moritz C (1996) Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci. Mol Ecol 5:629–640

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995a) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Raymond M, Rousset F (1995b) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Rice WR (1989) Analysing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Roland J, Keyghobadi N, Fownes S (2000) Alpine Parnassius butterfly dispersal: effects of landscape and population size. Ecology 81:1642–1653

    Google Scholar 

  • Rosenberg MS (2001) PASSAGE: pattern analysis, spatial statistics, and geographic exegesis. Version 1.1, Release 3.4. Department of Biology, Arizona State University, Tempe

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Sutcliffe OL, Bakkestuen V, Fry G, Stabbetorp OE (2003) Modelling the benefits of farmland restoration: methodology and application to butterfly movement. Landsc Urban Plan 63:15–31

    Article  Google Scholar 

  • Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327

    Article  PubMed  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19

    Article  Google Scholar 

  • Verbeylen G, De Bruyn L, Adriaensen F, Matthysen E (2003) Does matrix resistance influence Red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landscape Ecol 18:791–805

    Article  Google Scholar 

  • Vignieri SN (2005) Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus). Mol Ecol 14:1925–1937

    Article  PubMed  CAS  Google Scholar 

  • Vos CC, Antonisse-de Jong AG, Goedhart PW, Smulders MJM (2001) Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86:598–608

    Article  PubMed  CAS  Google Scholar 

  • Walker RS, Farmerie WG, Branch LC (2000a) Characterization of microsatellite loci for the mountain vizcacha Lagidium viscacia and their use in the plains vizcacha Lagostomus maximus. Mol Ecol 9:1672–1674

    Article  PubMed  CAS  Google Scholar 

  • Walker RS, Ackermann G, Schachter-Broide J, Pancotto V, Novaro AJ (2000b) Habitat use by mountain vizcachas (Lagidium viscacia Molina, 1782) in the Patagonian steppe. Z Säugetierkd 65:293–300

    Google Scholar 

  • Walker RS, Novaro AJ, Branch LC (2003) The effects of patch attributes, barriers, and distance between patches on the distribution of a rock-dwelling rodent (Lagidium viscacia). Landsc Ecol 18:185–192

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Centro de Ecología Aplicada del Neuquén for logistical support in the field. We thank J. Ayesa and the Lab de Teledetección de INTA-Bariloche for the digitized geological map, and O. Monsalvo, J. Schachter-Broide, V. Pancotto, G. Ackerman, and M. Biongiorno for assistance in the field. We thank landowners and the Delegación Regional Patagonia de Administración de Parques Nacionales de Argentina for permission to carry out the study. Funding was provided by the Lincoln Park Zoo Scott Neotropic Fund, Sigma Xi, the American Society of Mammalogists, and National Science Foundation doctoral dissertation improvement grant number DEB-9972717. Additional support was provided by the Wildlife Conservation Society and the University of Florida. We especially thank A. Clark, B. Bowen, W. Farmerie, D. Moraga Amador, and D. Brazeau for guidance in the lab. Finally, we thank B. Bowen, G. Tanner, M. Sunquist, C. Chapman, and two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Susan Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, R.S., Novaro, A.J. & Branch, L.C. Functional connectivity defined through cost-distance and genetic analyses: a case study for the rock-dwelling mountain vizcacha (Lagidium viscacia) in Patagonia, Argentina. Landscape Ecol 22, 1303–1314 (2007). https://doi.org/10.1007/s10980-007-9118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-007-9118-2

Keywords

Navigation