Skip to main content

Advertisement

Log in

Root trenching: a useful tool to estimate autotrophic soil respiration? A case study in an Austrian mountain forest

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

We conducted a trenching experiment in a mountain forest in order to assess the contribution of the autotrophic respiration to total soil respiration and evaluate trenching as a technique to achieve it. We hypothesised that the trenching experiment would alter both microbial biomass and microbial community structure and that fine roots (less than 2 mm diameter) would be decomposed within one growing season. Soil CO2 efflux was measured roughly biweekly over two growing seasons. Root presence and morphology parameters, as well as the soil microbial community were measured prior to trenching, 5 and 15 months after trenching. The trenched plots emitted about 20 and 30% less CO2 than the control plots in the first and second growing season, respectively. Roots died in trenched plots, but root decay was slow. After 5 and 15 months, fine root biomass was decreased by 9% (not statistically different) and 30%, (statistically different) respectively. When we corrected for the additional trenched-plot CO2 efflux due to fine root decomposition, the autotrophic soil respiration rose to ~26% of the total soil respiration for the first growing season, and to ~44% for the second growing season. Soil microbial biomass and community structure was not altered by the end of the second growing season. We conclude that trenching can give accurate estimates of the autotrophic and heterotrophic components of soil respiration, if methodological side effects are accounted for, only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen CP, Nikolov I, Nikolova P, Matyseek R, Häberle K-H (2005) Estimating “autotrophic” belowground respiration in spruce and beech forests: decreases following girdling. Eur J For Res 124:155–163. doi:10.1007/s10342-005-0072-8

    Google Scholar 

  • Bauhaus J, Messier C (1999) Evaluation of fine root length and diameter measurements obtained using RHIZO image analysis. Agron J 91:142–147

    Article  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572. doi:10.1038/25119

    Article  CAS  Google Scholar 

  • Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993) Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperature mixed hardwood forest. Can J For Res 23:1402–1407. doi:10.1139/x93-177

    Article  Google Scholar 

  • Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148:650–659. doi:10.1007/s00442-006-0402-7

    Article  PubMed  Google Scholar 

  • Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635. doi:10.1016/S0038-0717(00)00077-8

    Article  CAS  Google Scholar 

  • Ekblad A, Högberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between photosynthesis and root respiration. Oecologia 127:305–308. doi:10.1007/s004420100667

    Article  Google Scholar 

  • Englisch M (2001) Standorts- und bodenkundliche Eigenschaften der Intersiv-Untersuchungsfläche Mühleggerköpfl/Nordtiroler Kalkalpen. In: Herman F, Smidt S, Englisch M (eds) Stickstoffflüsse am Mühleggerköpfl in den Nordtiroler Kalkalpen, Forstliche Bundesversuchanstalt Wien, Vienna, pp 21–31

  • Englisch M, Starlinger F (1996) Woodland communities and sites at two altitude profiles near Achenkirch (The Tyrol). In: Smidt S, Herman F, Grill D, Guttenberger H (eds) Studies of ecosystems in the Limestone Alps- “Achenkirch altitude profiles”, Horn, pp 33–54

  • Epron D, Farque L, Lucot É, Badot P-M (1999a) Soil CO2 efflux in a beech forest: dependence on soil temperature and soil water content. Ann Sci 56:221–226

    Google Scholar 

  • Epron D, Farque L, Lucot É, Badot P-M (1999b) Soil CO2 efflux in a beech forest: the contribution of root respiration. Ann Sci 56:289–295. doi:10.1051/forest:19990403

    Article  Google Scholar 

  • Epron D, Le Dantec V, Dufrêne E, Granier A (2001) Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. Tree Physiol 21:145–152

    CAS  PubMed  Google Scholar 

  • Ewel KC, Cropper WPJ, Gholz HL (1987) Soil CO2 evolution in Florida slash pine plantations. II: Importance of root respiration. Can J For Res 17:330–333. doi:10.1139/x87-055

    Article  Google Scholar 

  • Frostegård Å, Bååth E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phsopholipid fatty acid analysis. Soil Biol Biochem 25:723–730. doi:10.1016/0038-0717(93)90113-P

    Article  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods 14:151–163. doi:10.1016/0167-7012(91)90018-L

    Article  Google Scholar 

  • Hackl E, Pfeffer M, Donat C, Bachmann G, Zechmeister-Boltenstern S (2005) Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol Biochem 37:661–671. doi:10.1016/j.soilbio.2004.08.023

    Article  CAS  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146. doi:10.1023/A:1006244819642

    Article  CAS  Google Scholar 

  • Herman F, Smidt S, Englisch M, Gärtner M, Jandl R, Mutsch F et al (2002) Nitrogen fluxes on an intensive investigation plot in the North Tyrolean Limestone Alps. Environ Sci Pollut R 2(Special Issue):46–52

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN et al (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792. doi:10.1038/35081058

    Article  PubMed  Google Scholar 

  • Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554. doi:10.1016/j.tree.2006.06.004

    Article  PubMed  Google Scholar 

  • Janssens IA, Crookshanks M, Taylor G, Ceulemans R (1998) Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in scots pine seedlings. Glob Change Biol 4:871–878. doi:10.1046/j.1365-2486.1998.00199.x

    Article  Google Scholar 

  • Jörgensen RG, Emmerling C (2006) Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. J Plant Nutr Soil Sci 169:295–309. doi:10.1002/jpln.200521941

    Article  CAS  Google Scholar 

  • Kelting DL, Burger JA, Edwards GS (1998) Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biol Biochem 30:961–968. doi:10.1016/S0038-0717(97)00186-7

    Article  CAS  Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinon analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–199

    Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448. doi:10.1016/j.soilbio.2005.08.020

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498. doi:10.1016/S0038-0717(00)00084-5

    Article  CAS  Google Scholar 

  • Lee M-s, Nakane K, Nakatsubo T, Koizumi H (2003) Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant Soil 255:311–318. doi:10.1023/A:1026192607512

    Article  CAS  Google Scholar 

  • McClaugherty CA, Aber JD, Melillo JM (1984) Decomposition dynamics of fine roots in forested ecosystems. Oikos 42:378–386. doi:10.2307/3544408

    Article  CAS  Google Scholar 

  • Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW et al (2006) Winter soil respiration controlled by climate and microbial community composition. Nature 439:711–714. doi:10.1038/nature04555

    Article  CAS  PubMed  Google Scholar 

  • Mutsch F (2001) Bodenchemische Charakterisierung des Mühleggerköpfls in Rahmen einer Untersuchung über Stickstoff-Flüsse in den Nordtiroler Kalkalpen. In: Herman F, Smidt S, Englisch M (eds) Stickstoffflüsse am Mühleggerköpfl in den Nordtiroler Kalkalpen. Forstliche Bundesversuchanstalt Wien, Vienna, pp 33–40

    Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310. doi:10.1111/j.1574-6941.1999.tb00621.x

    Article  CAS  Google Scholar 

  • Persson H (1983) The distribution and productivity of fine roots in boreal forests. Plant Soil 71:87–101. doi:10.1007/BF02182644

    Article  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration an its relationship to vegetation and climate. Tellus 44B:81–99

    CAS  Google Scholar 

  • Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis PG, Valentini R (2002) Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob Change Biol 8:851–866. doi:10.1046/j.1365-2486.2002.00521.x

    Article  Google Scholar 

  • Ross DJ, Scott NA, Tate KR, Rodda NJ, Townsend JA (2001) Root effects on soil carbon and nitrogen cycling in a Pinus radiata D. Don plantation on a coastal sand. Aust J Soil Res 39:1027–1039. doi:10.1071/SR00058

    Article  CAS  Google Scholar 

  • Scott-Denton LE, Rosenstiel TN, Monson RK (2006) Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob Change Biol 12:205–216. doi:10.1111/j.1365-2486.2005.01064.x

    Article  Google Scholar 

  • Schindlbacher A, Zechmeister-Boltenstern S, Kitzler B, Jandl R (2008) Experimental forest soil warming response of autotrophic and heterotrophic soil respiration to a short-term 10°C temperature rise. Plant Soil 303:323–330. doi:10.1007/s11104-007-9511-2

    Article  CAS  Google Scholar 

  • Siira-Pietikäinen A, Haimi J, Fritze H (2003) Organisms, decomposition, and growth of pine seedlings in boreal forest soil affected by sod cutting and trenching. Biol Fertil Soils 37:163–174

    Google Scholar 

  • Siira-Pietikäinen A, Haimi J, Kanninen A, Pietikäinen J, Fritze H (2001) Responses of decomposer community to root-isolation and addition of slash. Soil Biol Biochem 33:1993–2004. doi:10.1016/S0038-0717(01)00135-3

    Article  Google Scholar 

  • Subke J-A, Hahn V, Battipaglia G, Linder S, Buchmann N, Cotrufo MF (2004) Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia 139:551–559. doi:10.1007/s00442-004-1540-4

    Article  PubMed  Google Scholar 

  • Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73:231–256. doi:10.1007/s10533-004-7314-6

    Article  Google Scholar 

  • Trumbore SE (2006) Carbon respired by terrestrial ecosystems—recent progress and challenges. Glob Change Biol 12:141–153. doi:10.1111/j.1365-2486.2006.01067.x

    Article  Google Scholar 

  • Uchida M, Nakatsubo T, Horikoshi T, Nakane K (1998) Contribution of micro-organisms to the carbon dynamics in black spruce (Picea mariana) forest soil in Canada. Ecol Res 13:17–26. doi:10.1046/j.1440-1703.1998.00244.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ernst Leitgeb for providing the WinRhizo working environment, Veronika Bendl for the assistance on PLFA analysis. We also thank one anonymous reviewer and Dan Binkley for the helpful comments. This project has been partially funded by the HU2005-0023 Integrated Action from the Spanish Ministry of Education and Science and by funds from the Austrian Exchange Office; Acción Integrada WTZ Spanien-Österreich 08/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Díaz-Pinés.

Additional information

Communicated by A. Merino and A. Blanco.

This article belongs to the special issue “Plant–soil relationships in Southern European forests”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Pinés, E., Schindlbacher, A., Pfeffer, M. et al. Root trenching: a useful tool to estimate autotrophic soil respiration? A case study in an Austrian mountain forest. Eur J Forest Res 129, 101–109 (2010). https://doi.org/10.1007/s10342-008-0250-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-008-0250-6

Keywords

Navigation