Skip to main content
Log in

Study on Antioxidant Components in Rosé Wine Originating from the Wine Growing Region of Moravia, Czech Republic

Untersuchung zu antioxidativen Wirkstoffen im Roséwein aus der Weinbauregion Moravia, Tschechische Republik

  • Original Article
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

The estimation of antioxidants in fruit, vegetables, beverages, and foodstuffs has been discussed in a great number of scientific studies, but until now, problems concerning the analysis of antioxidant components of rosé wine has not been adequately investigated. This paper presented results of a study on antioxidant components contained in some samples of rosé wine originating from the Moravian wine growing region. The experiments involved altogether 48 samples of rosé wine made of grapes of the varieties ‘Blaufränkisch’, ‘Blauer Portugieser’, ‘Pinot Noir’, ‘Sankt Laurent’, and ‘Zweigeltrebe’. Grapes were harvested in 2013. Spectrophotometry was used to estimated antioxidant activity (53–73 mg L−1 GAE), content of total polyphenols (152–369 mg L−1), hydrocinnamic acid (52–148 mg L−1), flavonols (25–294 mg L−1) and anthocyanins (88–1754 mg L−1). The HPLC method was used for the detection of some important antioxidants, i. e. catechin, epicatechin, malvidin-3-glucoside, cis- and trans-resveratrol, ferrulic acid, coumaric acid and caftaric acid. This study enabled to determine basic profiles of the most important antioxidant components of the most popular Moravian red grapevine varieties. The studied wines were analyzed from several different aspects, which is not standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez I, Aleixandre JL, Garcia MJ, Lizama V (2006) Impact of prefermentative maceration on the phenolic and volatile compounds in Monastrell red wines. Anal Chim Acta 563:109–115. doi:10.1016/j.aca.2005.10.068

    Article  CAS  Google Scholar 

  • Arnous A, Makris DP, Kefalas P (2002) Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. J Food Compos Anal 15:655–665. doi:10.1006/jfca.2002.1070

    Article  CAS  Google Scholar 

  • Baroni MV, Naranjo RDD, Garcia-Ferreyra C, Otaiza S, Wunderlin DA (2012) How good antioxidant is the red wine? Comparison of some in vitro and in vivo methods to assess the antioxidant capacity of Argentinean red wines. LWT Food Sci Technol 47:1–7. doi:10.1016/j.lwt.2012.01.015

    Article  CAS  Google Scholar 

  • Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133:3248S–3254S

    CAS  PubMed  Google Scholar 

  • Beer D, Joubert E, Marais J, Manley M (2006) Maceration before and during fermentation: effect on pinotage wine phenolic composition, total antioxidant capacity and objective colour parameters. South Afr J Enol Vitic 27:137–150

    Google Scholar 

  • Bhagwat SA, Haytowitz BD, Holden JM (2011) USDA Database for the Flavonoid Content of Selected Foods. U.S. Department of Agriculture Agricultural Research Service Beltsville Human Nutrition Research Center, Beltsville, Maryland, http://www.ars.usda.gov/nutrientdata

  • Bravo L (1998) Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    Article  CAS  PubMed  Google Scholar 

  • Bruno G, Sparapano L (2007) Effects of three esca-associated fungi on Vitis vinifera L.: V. Changes in the chemical and biological profile of xylem sap from diseased cv. Sangiovese vines. Physiol Mol Plant Pathol 71:210–229. doi:10.1016/j.pmpp.2008.02.005

    Article  CAS  Google Scholar 

  • Burns J, Gardner P, O’Neill J, Crawford S, Morecroft I, McPhail D, Lister C, Matthews D, McLean M, Lean M, Duthie G, Crozier A (2000) Relationship among antioxidant activity, vasodilation capacity, and phenolic content of red wines. J Agric Food Chem 48:220–230. doi:10.1021/jf9909757

    Article  CAS  PubMed  Google Scholar 

  • Campodonico P, Barberi E, Pizzaro M, Sotomayor CP, Lissi EA (1998) A comparison of total phenol content of wines and their TRAP values measured by bleaching of ABTS radical cations. Bioletin Soc Chil Quim 43:281–285

    CAS  Google Scholar 

  • Cantos E, Espin JC, Tomas-Barberan FA (2002) Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC-DAD-MS-MS. J Agric Food Chem 50:5691–5696. doi:10.1021/jf0204102

    Article  CAS  PubMed  Google Scholar 

  • Casassa LF, Larsen RC, Beaver CW, Mireles MS, Keller M, Riley WR, Smithyman R, Harbertson JF (2013) Impact of extended maceration and Regulated Deficit Irrigation (RDI) in Cabernet Sauvignon wines: characterization of Proanthocyanidin distribution, Anthocyanin extraction, and chromatic properties. J Agric Food Chem 61:6446–6457. doi:10.1021/jf400733u

    Article  CAS  PubMed  Google Scholar 

  • Cheynier V, Souquet JM, Moutounet M (1989) Glutathione content and glutathione to hydroxycinnamic acid ratio in vitis-vinifera grapes and musts. Am J Enol Vitic 40:320–324

    CAS  Google Scholar 

  • Creasy LL, Creasy MT (1998) Grape chemistry and the significance of resveratrol: An overview. Pharm Biol 36:8–13. doi:10.1076/phbi.36.6.8.4554

    Article  CAS  Google Scholar 

  • Cristino R, Costa E, Cosme F, Jordao AM (2013) General phenolic characterisation, individual anthocyanin and antioxidant capacity of matured red wines from two Portuguese Appellations of Origins. J Sci Food Agric 93:2486–2493. doi:10.1002/jsfa.6064

    Article  CAS  PubMed  Google Scholar 

  • Delcambre A, Saucier C (2012) Identification of new flavan-3-ol monoglycosides by UHPLC-ESI-Q-TOF in grapes and wine. J Mass Spectrom 47:727–736. doi:10.1002/jms.3007

    Article  CAS  PubMed  Google Scholar 

  • Erdman JW, Balentine D, Arab L, Beecher G, Dwyer JT, Folts J, Harnly J, Hollman P, Keen CL, Mazza G, Messina M, Scalbert A, Vita J, Williamson G, Burrowes J (2007) Flavonoids and heart health: Proceedings of the ILSI North America Flavonoids Workshop, May 31-June 1, 2005, Washington, DC. J Nutr 137:718S–737S

    CAS  PubMed  Google Scholar 

  • Fernandez-Pachon MS, Villano D, Troncoso AM, Garcia-Parrilla MC (2006) Determination of the phenolic composition of sherry and table white wines by liquid chromatography and their relation with antioxidant activity. Anal Chim Acta 563:101–108. doi:10.1016/j.aca.2005.09.057

    Article  CAS  Google Scholar 

  • Frankel EN, Waterhouse AL, Teissedre PL (1995) Principal phenolic phytochemicals in selected california wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins. J Agric Food Chem 43:890–894. doi:10.1021/jf00052a008

    Article  CAS  Google Scholar 

  • Garcia-Alonso M, Minihane AM, Rimbach G, Rivas-Gonzalo JC, de Pascual-Teresa S (2009) Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. J Nutr Biochem 20:521–529. doi:10.1016/j.jnutbio.2008.05.011

    Article  CAS  PubMed  Google Scholar 

  • Ghiselli A, Nardini M, Baldi A, Scaccini C (1998) Antioxidant activity of different phenolic fractions separated from an Italian red wine. J Agric Food Chem 46:361–367. doi:10.1021/jf970486b

    Article  CAS  PubMed  Google Scholar 

  • Gil MI, Tomas-Barberan FA, Hess-Pierce B, Holcroft DM, Kader AA (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48:4581–4589. doi:10.1021/jf000404a

    Article  CAS  PubMed  Google Scholar 

  • Ginjom I, D’Arcy B, Caffin N, Gidley M (2013) Corrigendum to “Phenolic compound profiles in selected Queensland red wines at all stages of the wine-making process (vol 125, pg 823, 2011)”. Food Chem. doi:10.1016/j.foodchem.2013.04.088

    Google Scholar 

  • Han SY, Bae JY, Park SH, Kim YH, Park JHY, Kang YH (2013) Resveratrol inhibits IgE-mediated basophilic mast cell degranulation and passive cutaneous anaphylaxis in mice. J Nutr 143:632–639. doi:10.3945/jn.112.173302

    Article  CAS  PubMed  Google Scholar 

  • Huang WY, Cai YZ, Zhang YB (2010) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62:1–20. doi:10.1080/ 01635580903191585

    Article  PubMed  Google Scholar 

  • Hurtado I, Caldu P, Gonzalo A, Ramon JM, Minguez S, Fiol C (1997) Antioxidative capacity of wine on human LDL oxidation in vitro: effect of skin contact in winemaking of white wine. J Agric Food Chem 45:1283–1289. doi:10.1021/jf960583p

    Article  CAS  Google Scholar 

  • Ishimoto EY, Ferrari CKB, Bastos DHM, Torres EAFS (2006) In vitro antioxidant activity of Brazilian wines and grape juices. J Wine Res 17:107–115

    Article  Google Scholar 

  • Jordao AM, Simoes S, Correia AC, Goncalves FJ (2012) Antioxidant activity evolution during portuguese red wine vinification and their relation with the proanthocyanidin and anthocyanin composition. J Food Process Preserv 36:298–309. doi:10.1111/j.1745-4549.2011.00588.x

    Article  CAS  Google Scholar 

  • Ju ZY, Howard LR (2003) Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. J Agric Food Chem 51:5207–5213. doi:10.1021/jf0302106

    Article  CAS  PubMed  Google Scholar 

  • Jurikova JT, Sochor J, Rop O, Mlcek J, Balla S, Szekeres L, Adam V, Kizek R (2012a) Polyphenolic profile and biological activity of chinese hawthorn (Crataegus pinnatifida BUNGE). Fruits Mol 17:14490–14509. doi:10.3390/molecules171214490

    CAS  Google Scholar 

  • Jurikova T, Sochor J, Rop O, Mlcek J, Balla S, Szekeres L, Zitny R, Zitka O, Adam V, Kizek R (2012b) Evaluation of Polyphenolic profile and nutritional value of non-traditional fruit species in the Czech Republic – a comparative study. Molecules 17:8968–8981. doi:10.3390/molecules17088968

    Article  CAS  PubMed  Google Scholar 

  • Kallithraka S, Mohdaly AAA, Makris DP, Kefalas P (2005) Determination of major anthocyanin pigments in Hellenic native grape varieties (Vitis vinifera sp.): Association with antiradical activity. J Food Compos Analysis 18:375–386. doi:10.1016/j.jfca.2004.02.010

    Article  CAS  Google Scholar 

  • Kinsella JE, Frankel E, German B, Kanner J (1993) Possible mechanisms for the protective role of antioxidants in wine and plant foods. Food Technol 47:85–89

    CAS  Google Scholar 

  • Kumšta M (2007) Hydroxycinnamic acids – Part 1: General and antioxidant properties. Vinařský obzor (Wine Horizon) 6:

  • Kyseláková MBJ, Veverka J, Tříska J, Vrcholová N, Totušek J, Lefnerová D (2003) The influence of the grapevine treatment on the content of resveratrol and other phenolic compounds. Vinařský obzor (Wine Horizon) 7/8:357

  • Lachman J, Sulc M, Schilla M (2007) Comparison of the total antioxidant status of Bohemian wines during the wine-making process. Food Chem 103:802–807. doi:10.1016/j.foodchem.2006.09.024

    Article  CAS  Google Scholar 

  • Lampir L (2013) Varietal differentiation of white wines on the basis of phenolic compounds profile. Czech J Food Sci 31:172–179

    CAS  Google Scholar 

  • Landrault N, Poucheret P, Ravel P, Gasc F, Cros G, Teissedre PL (2001) Antioxidant capacities and phenolics levels of French wines from different varieties and vintages. J Agric Food Chem 49:3341–3348. doi:10.1021/jf010128f

    Article  CAS  PubMed  Google Scholar 

  • Latruffe N, Rifler JP (2013) Bioactive polyphenols from grapes and wine emphasized with resveratrol. Curr Pharm Des 19:6053–6063

    Article  CAS  PubMed  Google Scholar 

  • Li H, Wang XY, Li Y, Li PH, Wang H (2009) Polyphenolic compounds and antioxidant properties of selected China wines. Food Chem 112:454–460. doi:10.1016/j.foodchem.2008.05.111

    Article  CAS  Google Scholar 

  • Li HWH, Yuan CL, Wang SS (2004) Wine chemistry. Science Press, Beijing, p 273

    Google Scholar 

  • Li YG, Tanner G, Larkin P (1996) The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J Sci Food Agric 70:89–101. doi:10.1002/(sici)1097-0010(199601)70:13.0.co;2-n

    Article  CAS  Google Scholar 

  • Lin T (2013) From resveratrol to grape polyphenols. A tribute to the contributions of Dr. Albert Y. Sun. J Neurochem 125:68–68

    Google Scholar 

  • Liu YX, Pan QH, Yan GL, He JJ, Duan CQ (2010) Changes of Flavan-3-ols with different degrees of polymerization in seeds of ‘Shiraz’, ‘Cabernet Sauvignon’ and ‘Marselan’ grapes after veraison. Molecules 15:7763–7774. doi:10.3390/molecules15117763

    Article  CAS  PubMed  Google Scholar 

  • Loizzo MR et al (2013) Phenolics, aroma profile, and in vitro antioxidant activity of italian dessert Passito wine from Saracena (italy). J Food Sci 78:C703–C708. doi:10.1111/1750-3841.12110

    Article  CAS  PubMed  Google Scholar 

  • Longo L, Vasapollo G (2006) Extraction and identification of anthocyanins from Smilax aspera L. berries. Food Chem 94:226–231. doi:10.1016/j.foodchem.2004.11.008

    Article  CAS  Google Scholar 

  • Di Majo D, La Guardia M, Giammanco S, La Neve L, Giammanco M (2008) The antioxidant capacity of red wine in relationship with its polyphenolic constituents. Food Chem 111:45–49. doi:10.1016/j.foodchem.2008.03.037

    Article  Google Scholar 

  • Makris DP, Kallithraka S, Mamalos A (2006) Differentiation of young red wines based on cultivar and geographical origin with application of chemometrics of principal polyphenolic constituents. Talanta 70:1143–1152. doi:10.1016/j.talanta.2006.03.024

    Article  CAS  PubMed  Google Scholar 

  • Mane C, Souquet JM, Olle D, Verries C, Veran F, Mazerolles G, Cheynier V, Fulcrand H (2007) Optimization of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: Application to the characterization of Champagne grape varieties. J Agric Food Chem 55:7224–7233. doi:10.1021/jf071301w

    Article  CAS  PubMed  Google Scholar 

  • Mattivi F (1993) Resveratrol content in red and rose’ wines produced in Trentino (Italy) and currently available on the market. Riv Vitic Enologia (Italy) 46:37–45

  • McMurrough I, Madigan D, Smyth MR (1996) Semipreparative chromatographic procedure for the isolation of dimeric and trimeric proanthocyanidins from barley. J Agric Food Chem 44:1731–1735. doi:10.1021/jf960139m

    Article  CAS  Google Scholar 

  • Mustafa RA, Hamid AA, Mohamed S, Bakar AF (2010) Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. J Food Sci 75:C28–C35. doi:10.1111/j.1750-3841.2009.01401.x

    Article  CAS  PubMed  Google Scholar 

  • Obreque-Slier E, Pena-Neira A, Lopez-Solis R, Zamora-Marin F, Ricardo-da-Silva JM, Laureano O (2010) Comparative study of the phenolic composition of seeds and skins from Carmenere and Cabernet Sauvignon grape varieties (Vitis vinifera L.) during ripening. J Agric Food Chem 58:3591–3599. doi:10.1021/jf904314u

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, Yokotsuka K (1996) Trans-resveratrol concentrations in berry skins and wines from grapes grown in Japan. Am J Enol Vitic 47:93–99

    CAS  Google Scholar 

  • Paixao N, Perestrelo R, Marques JC, Camara JS (2007) Relationship between antioxidant capacity and total phenolic content of red, rose and white wines. Food Chem 105:204–214. doi:10.1016/j.foodchem.2007.04.017

    Article  CAS  Google Scholar 

  • Piljac-Zegarac J, Martinez S, Valek L, Stipcevic T, Kovacevic-Ganic K (2007) Correlation between the phenolic content and DPPH radical scavenging activity of selected croatian wines. Acta Aliment 36:185–193. doi:10.1556/AAlim.2007.0005

    Article  CAS  Google Scholar 

  • Pineiro Z, Canepa D, Palma M, Barroso CG (2012) Evolution of grape seed flavan-3-ols during ripening of different grape cultivars. Int J Food Sci Technol 47:40–46. doi:10.1111/j.1365-2621.2011.02804.x

    Article  CAS  Google Scholar 

  • Porquet D et al (2013) Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Omaha) 35:1851–1865. doi:10.1007/s11357-012-9489-4

    Article  CAS  Google Scholar 

  • Puertolas E, Saldana G, Alvarez I, Raso J (2011) Experimental design approach for the evaluation of anthocyanin content of rose wines obtained by pulsed electric fields. Influence of temperature and time of maceration. Food Chem 126:1482–1487. doi:10.1016/j.foodchem.2010.11.164

    Article  CAS  Google Scholar 

  • Rivero-Perez MD, Muniz P, Gonzalez-Sanjose ML (2007) Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies. J Agric Food Chem 55:5476–5483. doi:10.1021/jf070306q

    Article  CAS  PubMed  Google Scholar 

  • Rivero-Perez MD, Muniz P, Gonzalez-Sanjose ML (2008) Contribution of anthocyanin fraction to the antioxidant properties of wine. Food Chem Toxicol 46:2815–2822. doi:10.1016/j.fct.2008.05.014

    Article  CAS  PubMed  Google Scholar 

  • Romero Perez AI, Lamuela Raventos RM, Waterhouse AL, de la Torre Boronat MC (1996) Levels of cis- and trans-resveratrol and their glucosides in white and rose Vitis vinifera wines from Spain. J Agric Food Chem 44:2124–2128. doi:10.1021/jf9507654

    Article  CAS  Google Scholar 

  • Rop O, Reznicek V, Mlcek J, Jurikova T, Balik J, Sochor J, Kramarova D (2011a) Antioxidant and radical oxygen species scavenging activities of 12 cultivars of blue honeysuckle fruit. Hortic Sci 38:63–70

    Google Scholar 

  • Rop O, Sochor J, Jurikova T, Zitka O, Skutkova H, Mlcek J, Salas P, Krska B, Babula P, Adam V, Kramarova D, Beklova M, Provaznik I, Kizek R (2011b) Effect of five different stages of ripening on chemical compounds in Medlar (Mespilus germanica L.). Molecules 16:74–91. doi:10.3390/molecules16010074

    Article  CAS  Google Scholar 

  • Rop O, Reznicek V, Mlcek J, Jurikova T, Sochor J, Kizek R, Humpolicek P, Balik J (2012) Nutritional values of new Czech cultivars of Saskatoon berries (Amelanchier alnifolia Nutt.). Hortic Sci 39:123–128

    CAS  Google Scholar 

  • Rotches-Ribalta M, Andres-Lacueva C, Estruch R, Escribano E, Urpi-Sarda M (2012) Pharmacokinetics of resveratrol metabolic profile in healthy humans after moderate consumption of red wine and grape extract tablets. Pharmacol Res 66:375–382. doi:10.1016/j.phrs.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Moreno C, Larrauri JA, Saura-Calixto F (1999) Free radical scavenging capacity of selected red, rose and white wines. J Sci Food Agric 79:1301–1304. doi:10.1002/(sici)1097-0010 (19990715)79:103.0.co;2-y

    Article  CAS  Google Scholar 

  • Sharma S, Misra CS, Arumugam S, Roy S, Shah V, Davis JA, Shirumalla RK, Ray A (2011) Antidiabetic activity of resveratrol, a known SIRT1 activator in a genetic model for type-2 diabetes. Phytother Res 25:67–73. doi:10.1002/ptr.3221

    Article  CAS  PubMed  Google Scholar 

  • Sochor J, Ryvolova M, Krystofova O, Salas P, Hubalek J, Adam V, Trnkova L, Havel L, Beklova M, Zehnalek J, Provaznik I, Kizek R (2010a) Fully automated spectrometric protocols for determination of antioxidant activity: advantages and disadvantages. Molecules 15:8618–8640. doi:10.3390/molecules15128618

    Article  CAS  PubMed  Google Scholar 

  • Sochor J, Salas P, Zehnalek J, Krska B, Adam V, Havel L, Kizek R (2010b) An assay for spectrometric determination of antioxidant activity of a biological extract. Listy Cukrov Repar 126:416–417

    Google Scholar 

  • Sochor J, Zitka O, Skutkova H, Pavlik D, Babula P, Krska B, Horna A, Adam V, Provaznik I, Kizek R (2010c) Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes. Molecules 15:6285–6305. doi:10.3390/molecules15096285

    Article  CAS  PubMed  Google Scholar 

  • Sochor J, Skutkova H, Babula P, Zitka O, Cernei N, Rop O, Krska B, Adam V, Provaznik I, Kizek R (2011) Mathematical evaluation of the amino acid and polyphenol content and antioxidant activities of fruits from different apricot cultivars. Molecules 16:7428–7457. doi:10.3390/molecules16097428

    Article  CAS  PubMed  Google Scholar 

  • Somers TC, Evans ME (1977) Spectral evaluation of young red wines – anthocyanin equilibria, total phenolics, free and molecular SO2, chemical age. J Sci Food Agric 28:279–287

    Article  CAS  Google Scholar 

  • Stasko A, Brezova V, Mazur M, Certik M, Kalinak M, Gescheidt G (2008) A comparative study on the antioxidant properties of Slovakian and Austrian wines. LWT Food Sci Technol 41:2126–2135. doi:10.1016/j.lwt.2007.11.021

    Article  CAS  Google Scholar 

  • Teissedre PL, Frankel EN, Waterhouse AL, Peleg H, German JB (1996) Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and wines. J Sci Food Agric 70:55–61. doi:10.1002/(sici)1097-0010(199601)70:13.0.co;2-x

    Article  CAS  Google Scholar 

  • Uenobe F, Nakamura S, Miyazawa M (1997) Antimutagenic effect of resveratrol against Trp-P-1. Mutat Res Fund Mol Mech Mutagen 373:197–200. doi:10.1016/s0027-5107(96)00191-1

    Article  CAS  Google Scholar 

  • Vincenzi S et al (2013) Comparative study of the resveratrol content of twenty-one italian red grape varieties. South Afr J Enol Vitic 34:30–35

    CAS  Google Scholar 

  • Vivas NGY, Lagune L, Saucier C, Augustin M (1994) Estimation du degree de polymerization des procyanidins du raisin et du vin par la méthode au p‑dimethylaminocinnamaldéhyde. J Int Sci Vigne Vin 28:319–336

    CAS  Google Scholar 

  • Wirth J, Morel-Salmi C, Souquet JM, Dieval JB, Aagaard O, Vidal S, Fulcrand H, Cheynier V (2010) The impact of oxygen exposure before and after bottling on the polyphenolic composition of red wines. Food Chem 123:107–116. doi:10.1016/j.foodchem.2010.04.008

    Article  CAS  Google Scholar 

  • Wirth J, Caille S, Souquet JM, Samson A, Dieval JB, Vidal S, Fulcrand H, Cheynier V (2012) Impact of post-bottling oxygen exposure on the sensory characteristics and phenolic composition of Grenache rose wines. Food Chem 132:1861–1871. doi:10.1016/j.foodchem.2011.12.019

    Article  CAS  Google Scholar 

  • Zoecklein BWF, Gump BH, Nury FS (1990) Production wine analysis. Van Nostrand Reinhold Publishers, New York, pp 129–168

    Book  Google Scholar 

Download references

Acknowledgements

The financial support from sources of the project IGA 11/2016/591 ZF is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozena Prusova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baron, M., Sochor, J., Tomaskova, L. et al. Study on Antioxidant Components in Rosé Wine Originating from the Wine Growing Region of Moravia, Czech Republic. Erwerbs-Obstbau 59, 253–262 (2017). https://doi.org/10.1007/s10341-016-0317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-016-0317-3

Keywords

Schlüsselwörter

Navigation