Skip to main content
Log in

Loss of host fidelity in highly inbred populations of the parasitoid wasp Aphidius ervi (Hymenoptera: Braconidae)

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Inbreeding frequently reduces the fitness of organisms, but little is known about how this phenomenon can affect the biological control. Host fidelity provides an adaptive advantage to aphid parasitoids, allowing females to find their aphid host more quickly in heterogeneous environments. This trait is mediated by the learning of signals, mainly chemical cues emitted from the host in which parasitoids developed (natal). This article is aimed at studying whether host fidelity can be altered after many generations of inbreeding reproduction in caged laboratory populations, for which host preference and fitness parameters were measured in the parasitoid wasp Aphidius ervi. Also, the effect of the natal/non-natal hosts was studied, using parasitoids originated from the pea aphid (Acyrthosiphon pisum) and the grain aphid (Sitobion avenae). We observed a loss of host fidelity in the studied A. ervi populations, irrespective of their natal aphid host, which contrasts with previous reports showing preference for natal hosts in outbred laboratory populations. The loss of host fidelity is discussed in terms of the origin of populations; the sex ratio was strongly biased toward males and long-time maintenance under laboratory conditions. Our results highlight the need for controlling the genetic diversity of caged parasitoids before they are released into fields, as a long period of inbreeding could negatively affect the biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antolin MF (1999) A genetic perspective on mating systems and sex ratios of parasitoid wasps. Res Popul Ecol (Kyoto) 41:29–37. doi:10.1007/PL00011979

    Article  Google Scholar 

  • Antolin MF, Bjorkstena TA, Vaughn TT (2006) Host-related fitness trade-offs in a presumed generalist parasitoid, Diaeretiella rapae (Hymenoptera: Aphidiidae). Ecol Entomol 31:242–254. doi:10.1111/j.1365-2311.2006.00769.x

    Article  Google Scholar 

  • Bates DM (2010) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  • Boivin G, Hance T, Brodeur J (2012) Aphid parasitoids in biological control. Can J Plant Sci 92:1–12. doi:10.4141/cjps2011-045

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  PubMed  Google Scholar 

  • Boulton RA, Collins LA, Shuker DM (2015) Beyond sex allocation: the role of mating systems in sexual selection in parasitoid wasps. Biol Rev 90:599–627. doi:10.1111/brv.12126

    Article  PubMed  Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796. doi:10.1038/nrg2664

    Article  CAS  PubMed  Google Scholar 

  • Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity (Edinb) 71:421–435. doi:10.1038/hdy.1993.157

    Article  Google Scholar 

  • Cook JM, Crozier RH (1995) Sex determination and population biology in the Hymenoptera. Trends Ecol Evol 10:281–286

    Article  CAS  PubMed  Google Scholar 

  • Damiens D, Boivin G (2006) Why do sperm-depleted parasitoid males continue to mate? Behav Ecol 17:138–143. doi:10.1093/beheco/arj009

    Article  Google Scholar 

  • Daza-Bustamante P, Fuentes-Contreras E, Rodriguez LC, Figueroa CC, Niemeyer HM (2002) Behavioural differences between Aphidius ervi populations from two tritrophic systems are due to phenotypic plasticity. Entomol Exp Appl 104:321–328

    Article  CAS  Google Scholar 

  • De Rijk M, Dicke M, Poelman EH (2013) Foraging behaviour by parasitoids in multiherbivore communities. Anim Behav 85:1517–1528. doi:10.1016/j.anbehav.2013.03.034

    Article  Google Scholar 

  • Figueroa CC, Simon JC, Le Gallic JF, Prunier-Leterme N, Briones LM, Dedryver CA, Niemeyer HM (2004) Effect of host defense chemicals on clonal distribution and performance of different genotypes of the cereal aphid Sitobion avenae. J Chem Ecol 30:2515–2525. doi:10.1007/s10886-004-7947-x

    Article  CAS  PubMed  Google Scholar 

  • Gandolfi M, Mattiacci L, Dorn S (2003) Mechanisms of behavioral alterations of parasitoids reared in artificial systems. J Chem Ecol 29:1871–1887. doi:10.1023/A:1024854312528

    Article  CAS  PubMed  Google Scholar 

  • Geden CJ, Smith L, Long SJ, Rutz DA (1992) Rapid deterioration of searching behavior, host destruction, and fecundity of the parasitoid Muscidifurax-Raptor (Hymenoptera, Pteromalidae) in culture. Ann Entomol Soc Am 85:179–187

    Article  Google Scholar 

  • Giunti G, Canale A, Messing RH et al (2015) Parasitoid learning: current knowledge and implications for biological control. Biol Control 90:208–219. doi:10.1016/j.biocontrol.2015.06.007

    Article  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • Grenier S, De Clerq P (2003) Comparison of artificially versus naturally reared natural enemies and their potential use in biological control. In: van Lenteren JC (ed) Quality control and production of biological control agent. CAB International, Wallingford, pp 115–131

    Google Scholar 

  • Harrison XA (2014) Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2:e616. doi:10.7717/peerj.616

    Article  PubMed  PubMed Central  Google Scholar 

  • He XZ, Wang Q (2008) Reproductive strategies of Aphidius ervi Haliday (Hymenoptera: Aphidiidae). Biol Control 45:281–287. doi:10.1016/j.biocontrol.2008.03.003

    Article  Google Scholar 

  • Henry LM, Gillespie DR, Roitberg BD (2005) Does mother really know best? Oviposition preference reduces reproductive performance in the generalist parasitoid Aphidius ervi. Entomol Exp Appl 116:167–174. doi:10.1111/j.1570-7458.2005.00318.x

    Article  Google Scholar 

  • Henry LM, Roitberg BD, Gillespie DR (2008) Host-range evolution in Aphidius parasitoids: fidelity, virulence and fitness trade-offs on an ancestral host. Evolution 62:689–699. doi:10.1111/j.1558-5646.2007.00316.x

    Article  PubMed  Google Scholar 

  • Henry LM, May N, Acheampong S et al (2010) Host-adapted parasitoids in biological control: does source matter? Ecol Appl 20:242–250

    Article  PubMed  Google Scholar 

  • Henter HJ (2003) Inbreeding depression and haplodiploidy: experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa. Evolution 57:1793–1803. doi:10.1554/02-751

    Article  PubMed  Google Scholar 

  • Hothorn TF, Bretz P, Westfall P, Heiberger RM (2008) Multcomp: simultaneous inference in general parametric models. http://CRAN.R-project.org. R package version 1.0-0. Accessed on Oct 2015

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Luna M, Hawkins B (2004) Effects of inbreeding versus outbreeding in Nasonia vitripennis (Hymenoptera: Pteromalidae). Environ Entomol 33:765–775. doi:10.1603/0046-225X-33.3.765

    Article  Google Scholar 

  • Niemeyer HM (2009) Hydroxamic acids derived from 2-hydroxy-2 H-1, 4-benzoxazin-3 (4 H)-one: key defense chemicals of cereals. J Agric Food Chem 57:1677–1696

    Article  CAS  PubMed  Google Scholar 

  • Ode PJ, Antolin MF, Strand MR (1997) Constrained oviposition and female-biased sex allocation in a parasitic wasp. Oecologia 109:547–555

    Article  Google Scholar 

  • Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc Biol Sci 275:293–299. doi:10.1098/rspb.2007.1192

    Article  PubMed  Google Scholar 

  • Ottoni EB (2000) EthoLog 2.2: a tool for the transcription and timing of behavior observation sessions. Behav Res Methods Instrum 32:446–449

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peccoud J, Bonhomme J, Mahéo F et al (2013) Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes. Insect Sci 21:291–300. doi:10.1111/1744-7917.12083

    Article  PubMed  Google Scholar 

  • Peccoud J, Huerta M, Bonhomme J, Laurence C, Outreman Y, Smadja CM, Simon JC (2014) Widespread host-dependent hybrid unfitness in the pea aphid species complex. Evolution 68:2983–2995. doi:10.1111/evo.12478

    Article  PubMed  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Roush RT (1990) Genetic considerations in the propagation of entomophagous species. In: Baker RR, Dunn PE (eds) New directions in biological control: alternatives for suppressing agricultural pests and disease. Plenum Press, New York, pp 373–387

    Google Scholar 

  • Salin C, Deprez B, Van Bockstaele DR et al (2004) Sex determination mechanism in the hymenopteran parasitoid Aphidius rhopalosiphi De Stefani-Peres (Braconidae: Aphidiinae). Belg J Zool 134:15–21

    Google Scholar 

  • Schwörer U, Völkl W (2001) Foraging behavior of Aphidius ervi (Haliday) (Hymenoptera: Braconidae: Aphidiinae) at different spatial scales: resource utilization and suboptimal weather conditions. Biol Control 21:111–119. doi:10.1006/bcon.2001.0931

    Article  Google Scholar 

  • Sepúlveda DA, Zepeda-Paulo F, Ramírez CC, Lavandero B, Figueroa CC (2016) Diversity, frequency and geographic distribution of facultative bacterial endosymbionts in introduced aphid pests. Insect Sci. doi:10.1111/1744-7917.12313

    PubMed  Google Scholar 

  • Starý P (1995) The Aphidiidae of Chile (Hymenoptera, Ichneumonoidea, Aphidiidae). Dtsch Entomol Zeitschrift 42:113–138

    Article  Google Scholar 

  • Storeck A, Poppy GM, Emden HF, Powell W (2000) The role of plant chemical cues in determining host preference in the generalist aphid parasitoid Aphidius colemani. Entomol Exp Appl 97:41–46. doi:10.1046/j.1570-7458.2000.00714.x

    Article  CAS  Google Scholar 

  • Stouthamer R, Luck RF, Werren JH (1992) Genetics of sex determination and the improvement of biological control using parasitoids. Environ Entomol 21:427–435

    Article  Google Scholar 

  • Therneau TM (1999) A package for survival analysis in statistical technical report. Mayo Foundation. http://www.mayo.edu/hsr/people/therneau/survival

  • Tien NSH, Sabelis MW, Egas M (2014) Inbreeding depression and purging in a haplodiploid: gender-related effects. Heredity (Edinb) 114:327–332. doi:10.1038/hdy.2014.106

    Article  Google Scholar 

  • Torvik MM (1931) Genetic evidence for diploidsm of biparental males in Habrobracon. Biol Bull 61:139–156

    Article  Google Scholar 

  • Tumlinson J, Lewis W, Vet L (1993) How parasitic wasps find their hosts. Sci Am 268:100–106

    Article  CAS  Google Scholar 

  • Unruh TR, White W, Gonzalez D, Gordh G, Luck RF (1983) Heterozygosity and effective size in laboratory populations of Aphidius ervi [Hym.: Aphidiidae]. Entomophaga 28:245–258

    Article  Google Scholar 

  • Van Lenteren JC (2003) Quality control and production of biological control agents. CABI, Cambridge

    Google Scholar 

  • Vayssade C, De Fazio C, Quaglietti B et al (2014) Inbreeding depression in a parasitoid wasp with single-locus complementary sex determination. PLoS One 9:1–8. doi:10.1371/journal.pone.0097733

    Article  Google Scholar 

  • Völkl W (1994) Searching at different spatial scales: the foraging behaviour of the aphid parasitoid Aphidius rosae in rose bushes. Oecologia 100:177–183. doi:10.1007/BF00317144

    Article  Google Scholar 

  • Weinbrenner M, Völkl W (2001) Oviposition behaviour of the aphid parasitoid, Aphidius ervi: are wet aphids recognized as host? Entomol Exp Appl 103:51–59. doi:10.1023/A:1019841517467

    Article  Google Scholar 

  • Werren JH (1993) The evolution of inbreeding in haplodiploid organisms. In: Thornhill NW (ed) The natural history of inbreeding and outbreeding. Theoretical and empirical perspectives. The University of Chicago Press, Chicago

    Google Scholar 

  • Zepeda-Paulo F, Ortiz-Martínez S, Figueroa CC, Lavandero B (2013) Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents. Evol Appl 6:983–999. doi:10.1111/eva.12081

    Article  PubMed  PubMed Central  Google Scholar 

  • Zepeda-Paulo F, Lavandero B, Mahéo F et al (2015) Does sex-biased dispersal account for the lack of geographic and host-associated differentiation in introduced populations of an aphid parasitoid? Ecol Evol 5:2149–2161. doi:10.1002/ece3.1504

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Gu H, Dorn S (2007) Effects of inbreeding on fitness components of Cotesia glomerata, a parasitoid wasp with single-locus complementary sex determination (sl-CSD). Biol Control 40:273–279. doi:10.1016/j.biocontrol.2006.11.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Angélica González, Gabriel Ballesteros, and Sebastián Ortíz for helping us in aphid and parasitoid rearing and data analysis and with advice on parasitoid biology and species determinations. DAS thanks to Iniciativa Científica Milenio grant NC120027 for a fellowship. Also, we thank the valuable comments made by anonymous referees.

Funding

This study was funded by FONDECYT (Grant Number 1130483 to CCF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Figueroa.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Communicated by M. Traugott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepúlveda, D.A., Zepeda-Paulo, F., Ramírez, C.C. et al. Loss of host fidelity in highly inbred populations of the parasitoid wasp Aphidius ervi (Hymenoptera: Braconidae). J Pest Sci 90, 649–658 (2017). https://doi.org/10.1007/s10340-016-0798-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-016-0798-8

Keywords

Navigation