Skip to main content
Log in

Evaluation of resistance in different cowpea cultivars to Callosobruchus maculatus infestation

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Cowpea [Vigna unguiculata (L.) Walp] seeds are an important source of nutrients for human and animal. However, part of the seed production is lost due to insect attacks, mainly by the weevil Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae), a major pest of stored cowpeas. An efficient method for controlling seed infestation is the use of insect-resistant cultivars. In this work, we studied the resistance of different cowpea Brazilian cultivars (BRS) to infestation and damage by C. maculatus. Our results showed that some cultivars interfered in female oviposition. The time necessary for the larvae to perforate the seed coat of some cultivars increased up to 40 %. No relationship between seed coat thickness, textures, or pigmentation and the larval ability of crossing seed coats was observed. Larval survival was also affected by cowpea cultivars. In BRS Xiquexique, only 30 % of the larvae survived at 20 days after oviposition. The weight of larvae developed into BRS Pajeu, and BRS Xiquexique cultivars decreased about 50 %. Cysteine protease, α-glucosidase, and α-amylase activities decreased in larvae developed in some cultivars, mainly in Pajeu, Guariba, Tucumaque, and Xiquexique. Adult emergence also decreased in Xiquexique, Pajeu, Tucumaque, and Paraguaçu BRS cultivars. A direct relationship between higher infestation and lower seed germination and seedling growth potential was observed. From these data, we would recommend the use of Pajeu, Guariba, Tucumaque, and Xiquexique BRS cultivars as a way to reduce cowpea infestation, and suggest that their resistance mechanism is related to the diminishment of larval digestive abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguiar JM, Franco OL, Rigden DJ, Bloch C Jr, Monteiro AC, Flores VM, Jacinto T, Xavier-Filho J, Oliveira AE, Grossi-de-Sá MF, Fernandes KV (2006) Molecular modeling and inhibitory activity of cowpea cystatin against bean bruchid pests. Proteins 15:662–670

    Article  CAS  Google Scholar 

  • Appleby JA, Credland PF (2003) Variation in responses to susceptible and resistant cowpeas among West African populations of Callosobruchus maculatus (Coleoptera: Bruchidae). J Econ Entomol 96:489–502

    Article  PubMed  CAS  Google Scholar 

  • Badii BK, Adarkwah C, Obeng-Ofori D, Ulrichs C (2014) Efficacy of diatomaceous earth formulations against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in Kersting’s groundnut (Macrotyloma geocarpum Harms): influence of dosage rate and relative humidity. J Pest Sci 87:285–294

    Article  Google Scholar 

  • Bae SD, Kim HJ, Mainali BP (2014) Changes in nutritional composition of soybean seed caused by feeding of pentatomid (Hemiptera: Pentatomidae) and alydid bugs (Hemiptera: Alydidae). J Econ Entomol 107:1055–1060

    Article  PubMed  Google Scholar 

  • Beck CW, Blumer LS (2007) A handbook on bean beetles, Callosobruchus maculatus. http://www.beanbeetles.org

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boughdad A, Gillon Y, Gagnepain C (1986) Influence du tegument des graines mures de Vicia faba sur le developpement larvaire de Callosobruchus maculates. Entomol Exp Appl 42:219–223

    Article  Google Scholar 

  • Bridge PD, Sawilowsky SS (1999) Increasing physicians’ awareness of the impact of statistics on research outcomes: comparative power of the t-test and and Wilcoxon Rank-Sum test in small samples applied research. J Clin Epidemiol 52:229–235

    Article  PubMed  CAS  Google Scholar 

  • Carlini CR, Grossi-de-Sá MF (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40:1515–1539

    Article  PubMed  CAS  Google Scholar 

  • Chi YH, Salzman RA, Balfe S, Ahn JE, Sun W, Moon J, Yun DJ, Lee SY, Higgins TJ, Pittendrigh B, Murdock LL, Zhu-Salzman K (2009) Cowpea bruchid midgut transcriptome response to a soybean cystatin—costs and benefits of counter-defence. Insect Mol Biol 18:97–110

    Article  PubMed  CAS  Google Scholar 

  • Crawley MJ (2000) Seed predators and plant population dynamics. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CAB International, Wallingford, pp 167–181

    Chapter  Google Scholar 

  • Credland PF (1987) Effects of host change on the fecundity and development of an unusual strain of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res 23:91–98

    Article  Google Scholar 

  • De Sá LFR, Wermelinger TT, Ribeiro ES, Gravina GA, Fernandes KVS, Xavier-Filho J, Venancio TM, Rezende GL, Oliveira AEA (2014) Effects of Phaseolus vulgaris (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). J Insect Physiol 60:50–57

    Article  PubMed  CAS  Google Scholar 

  • Desroches P, El Shazly E, Mandon N, Duc G, Huignard J (1995) Development of Callosobruchus chinensis (L.) and Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in seeds of Vicia faba L. differing in their tannin, vicine and convicine contents. J Stored Prod Res 31:83–89

    Article  CAS  Google Scholar 

  • Dick K, Credland PF (1986) Changes in the response of Callosobruchus maculatus (Coleoptera: Bruchidae) to a resistant variety of cowpea. J Stored Prod Res 22:221–233

    Google Scholar 

  • Gatehouse AMR, Gatehouse JA, Dobie P, Kilminster AM, Boulter D (1979) Biochemical basis of insect resistance in Vigna unguiculata. J Sci Food Agric 30:948–958

    Article  CAS  Google Scholar 

  • Hall AE, Cisseb N, Thiawb S, Elawadc HOA, Ehlersa JD, Ismaild AM, Ferye RL, Robertsf PA, Kitchg LW, Murdockh LL, Boukari O, Phillipsj RD, McWattersj KH (2003) Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP. Field Crop Res 82:103–134

    Article  Google Scholar 

  • Ishimoto M, Kitamura K (1989) Growth inhibitory effects of alpha amylase inhibitor from the kidney bean, Phaseolus vulgaris (L) on 3 species of bruchids (Coleoptera, Bruchididae). Appl Entomol Zool 24:281–286

    Google Scholar 

  • Jackai LEN, Asante SK (2003) A case for the standardization of protocols used in screening cowpea, Vigna unguiculata for resistance to Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae). J Stored Prod Res 39:251–263

    Article  Google Scholar 

  • Janzen DH (1977) How southern cowpea weevil larvae (Callosobruchus maculatus) die on non-host seeds. Ecology 58:921–927

    Article  Google Scholar 

  • Lale NES, Efeovbokhan SO (1991) Resistance status of new cowpea cultivars to a storage insect pest, Callosobruchus maculatus. Postharvest Biol Technol 1:181–186

    Article  Google Scholar 

  • Macedo MLR, Andrade LBS, Moraes RA, Xavier-Filho J (1993) Vicilin variants and the resistance of cowpea (Vigna unguiculata) seeds to the cowpea weevil (Callosobruchus maculatus). Comp Biochem Physiol 105:88–94

    Google Scholar 

  • Macedo MLR, Fernandes KVS, Sales MP, Xavier-Filho J (1995) Purification and properties of storage proteins (vicilins) from cowpea (Vigna unguiculata) seeds which are susceptible or resistant to the bruchid beetle Callosobruchus maculatus. Braz J Med Biol Res 28:183–190

    PubMed  CAS  Google Scholar 

  • Michaud D, Nguyen-Quoc B, Bernier-Vadnais N, Faye L, Yelle S (1994) Cysteine proteinase forms in sprouting potato tuber. Plant Physiol 90:497–503

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Moïse JA, Han S, Gudynaitę-Savitch L, Johnson DA, Mikica BLA (2005) Seed coats: structure, development, composition, and biotechnology. In Vitro Cell Dev Biol Plant 41:620–644

    Article  Google Scholar 

  • Nangju D, Flinn JC, Singh SR (1979) Control of cowpea pests by utilization of insect-resistant cultivars and minimum insecticide application. Field Crop Res 2:373–385

    Article  Google Scholar 

  • Nogueira FCS, Silva CP, Alexandre D, Samuels RI, Soares EL, Aragão FJ, Palmisano G, Domont GB, Roepstorff P, Campos FA (2012) Global proteome changes in larvae of Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) following ingestion of a cysteine proteinase inhibitor. Proteomics 00:1–12

    Google Scholar 

  • Oliveira AEA, Fernandes KVS, Souza AJ, Santos PO (2009) Influence of the soybean seed coat upon seed infestation and development of Callosobruchus maculatus larvae (in press). In: Soybean and Wheat Crops: Growth, Fertilization, and Yield: Soybean crops: growth, fertilization and yield. Nova Science Publishers, New York, pp 335–372

  • Pedra JHF, Brandt A, Westerman R, Lobo N, Li HM, Romero-Severson J, Murdock LL, Pittendrigh BR (2003) Transcriptome analysis of the cowpea weevil bruchid: identification of putative proteinases and alpha-amylases associated with food breakdown. Insect Mol Biol 12:405–412

    Article  PubMed  CAS  Google Scholar 

  • Phillips RD, McWatters KH, Chinnan MS, Hung Y, Beuchat LR, Sefa-Dedeh S, Sakyi-Dawson E, Ngoddy P, Nnanyelugo D, Enwere J, Komey NS, Liu K, Mensa-Wilmot Y, Nnanna IA, Okeke C, Prinyawiwatkul W, Saalia FK (2003) Utilization of cowpeas for human food. Field Crop Res 82:193–213

    Article  Google Scholar 

  • Pueyo JJ, Morgan TD, Ameenuddin N, Liang C, Reeck GR, Chrispeels MJ, Kramer KJ (1995) Effects of bean and wheat alpha-amylase inhibitors on alpha-amylase activity and growth of stored-product insect pests. Entomol Exp Appl 75:237–244

    Article  CAS  Google Scholar 

  • Razmjou J, Naseri B, Hemati AS (2014) Comparative performance of the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) on various host plants. J Pest Sci 87:29–37

    Article  Google Scholar 

  • Ryan CA (1991) Protease inhibitor in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449

    Article  Google Scholar 

  • Sales MP, Macedo MRL, Xavier-Filho J (1992) Digestibility of cowpea (Vigna unguiculata) vicilins by pepsin, papain and bruchid midgut proteinases. Comp Biochem Physiol 103:945–950

    Google Scholar 

  • Sales MP, Pimenta PP, Paes NS, Grossi-de-Sá MF, Xavier-Filho J (2001) Vicilins (7S storage globulins) of cowpea (Vigna unguiculata) seeds bind to chitinous structures of the midgut of Callosobruchus maculatus (Coleoptera: Bruchidae) larvae. Braz J Med Biol Res 34:27–34

    Article  PubMed  CAS  Google Scholar 

  • Sales MP, Andrade LBS, Ary MB, Miranda MRA, Teixeira FM, Oliveira AS, Fernandes KVS, Xavier-Filho J (2005) Performance of bean bruchids Callosobruchus maculatus and Zabrotes subfasciatus (Coleoptera: Bruchidae) reared on resistant (IT81D-1045) and susceptible (Epace10) Vigna unguiculata seeds: Relationship with trypsin inhibitor and vicilin excretion. Comp Biochem Physiol 142:422–426

    Article  CAS  Google Scholar 

  • Seck D (1993) Resistance to Callosobruchus maculatus F. (Col., Bruchidae) in some cowpea varieties from Senegal. J Stored Prod Res 29:49–52

    Article  Google Scholar 

  • Singh BB (1999) Improved breeding lines with resistance to bruchid. IITA Annu Rep 11:29–30

    Google Scholar 

  • Singh BB, Adjadi O, Singh SR (1985) Bruchid resistance in cowpea. Crop Sci 25:736–739

    Article  Google Scholar 

  • Singh BB, Ajeigbe HA, Tarawali SA, Fernandez-Rivera S, Abubakar M (2003) Improving the production and utilization of cowpea as food and fodder. Field Crop Res 84:169–177

    Article  Google Scholar 

  • Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328

    Article  PubMed  CAS  Google Scholar 

  • Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean alpha-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850

    Article  PubMed  CAS  Google Scholar 

  • Souza AJ, Santos PO, Pinto MST, Wermelinger TT, Ribeiro ES, Souza SC, Deus MF, Souza MC, Xavier-Filho J, Fernandes KVS, Oliveira AEA (2011) Natural seed coats provide protection against penetration by Callosobruchus maculatus (Coleoptera: Bruchidae) larvae. Crop Prot 30:651–657

    Article  Google Scholar 

  • Terra WR, Ferreira C, De Bianchi AG (1979) Distribution of digestive enzymes among the endo and ectoperitrophic spaces and midgut cells of Rhynchosciara and its physiological significance. J Insect Physiol 25:423–434

    Article  Google Scholar 

  • Thiéry D (1984) Hardness of some fabaceous seed coats in relation to larval penetration by Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J Stored Prod Res 20:177–181

    Article  Google Scholar 

  • Thiéry D, Jarry M, Pouzat J (1994) To penetrate or not penetrate? A behavioral choice by bean beetle first-instar larvae in response to Phaseolus vulgaris seed surface quality. J Chem Ecol 20:1867–1875

    Article  PubMed  Google Scholar 

  • Vallejo-Marin M, Dominguez CA, Dirzo R (2006) Simulated seed predation reveals a variety of germination responses of neotropical rain forest species. Am J Bot 93:369–376

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Francisco R. Freire-Filho (Programa de Melhoramento de Feijão-caupi da Embrapa Meio-Norte, Brazil) for kindly providing the cowpea cultivars used in this work. This work was supported by grants from the Brazilian agencies: FAPERJ, CNPq, CAPES, TECNORTE, and from the Universidade Estadual do Norte Fluminense Darcy Ribeiro.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valdirene M. Gomes or Antonia Elenir A. Oliveira.

Additional information

Communicated by C. G. Athanassiou.

Luana P. Cruz and Leonardo F. R. de Sá contributed equally to the execution of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, L.P., de Sá, L.F.R., Santos, L.A. et al. Evaluation of resistance in different cowpea cultivars to Callosobruchus maculatus infestation. J Pest Sci 89, 117–128 (2016). https://doi.org/10.1007/s10340-015-0657-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-015-0657-z

Keywords

Navigation