Skip to main content
Log in

Another look at category effects on colour perception and their left hemispheric lateralisation: no evidence from a colour identification task

  • Short Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

The present study aimed to replicate category effects on colour perception and their lateralisation to the left cerebral hemisphere (LH). Previous evidence for lateralisation of colour category effects has been obtained with tasks where a differently coloured target was searched within a display and participants reported the lateral location of the target. However, a left/right spatial judgment may yield LH-laterality effects per se. Thus, we employed an identification task that does not require a spatial judgment and used the same colour set that previously revealed LH-lateralised category effects. The identification task was better performed with between-category colours than with within-category task both in terms of accuracy and latency, but such category effects were bilateral or RH-lateralised, and no evidence was found for LH-laterality effects. The accuracy scores, moreover, indicated that the category effects derived from low sensitivities for within-blue colours and did not reflect the effects of categorical structures on colour perception. Furthermore, the classic “category effects” were observed in participants’ response biases, instead of sensitivities. The present results argue against both the LH-lateralised category effects on colour perception and the existence of colour category effects per se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. Since we employed a uniform black background, instead of grey background (Siok et al. 2009), participants’ adaptation levels might be different from those of previous studies.

  2. The degrees of freedom were adjusted by employing .50 of the epsilon for lower-bound.

References

  • Aaronson D, Watts B (1987) Extensions of Grier’s computational formulas for A′ and B′′ to bellow-chance performance. Psychol Bull 102(3):439–442

    Article  CAS  PubMed  Google Scholar 

  • Bornstein MH (1987) Perceptual categories in vision and audition. In: Harnad S (ed) Categorical perception: the groundwork of cognition. Cambridge University Press, Cambridge, pp 287-300

  • Brainard DH (1997) The psychophysics toolbox. Spat Vis 10(4):433–436

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Lindsey DT, Guckes KM (2011) Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical. J Vis 11(12):1–21

    Article  Google Scholar 

  • Dragovic M (2004) Categorization and validation of handedness using latent class analysis. Acta Neuropsychiatrica 16(4):212–218

    Article  Google Scholar 

  • Drivonikou G, Kay P, Regier T, Ivry RB, Gilbert AL, Franklin A, Davies IRL (2007) Further evidence that Whorfian effects are stronger in the right visual field than the left. Proc Natl Acad Sci USA 104:1097–1102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franklin A, Drivonikou G, Bevis L, Davies IRL, Kay P, Regier T (2008) Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults. Proc Natl Acad Sci USA 105:3221–3225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert AL, Regier T, Kay P, Ivry RB (2006) Whorf hypothesis is supported in the right visual field but not the left. Proc Natl Acad Sci USA 103:489–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert AL, Regier T, Kay P, Ivry RB (2008) Support for lateralization of the Whorf effect beyond the realm of color discrimination. Brain Lang 105:91–98

    Article  PubMed  Google Scholar 

  • Guzman-Martinez E, Leung P, Franconeri S, Grabowecky M, Suzuki S (2009) Rapid eye-fixation training without eyetracking. Psychon Bull Rev 16(3):491–496

    Article  PubMed Central  PubMed  Google Scholar 

  • Hellige JB, Michimata C (1989) Categorization versus distance: hemispheric differences for processing spatial information. Mem Cogn 17(6):770–776

    Article  CAS  Google Scholar 

  • Hellige JB, Laeng B, Michimata C (2010) Processing asymmetries in the visual system. In: Hugdahl K, René W (eds) The two halves of the brain: information processing in the cerebral hemispheres. MIT Press, Cambridge, MA, pp 379–415

    Chapter  Google Scholar 

  • Holmes KJ, Wolff P (2012) Does categorical perception in the left hemisphere depend on language? J Exp Psychol Gen 141(3):439–443

    Article  PubMed  Google Scholar 

  • Jacobs RA, Kosslyn SM (1994) Encoding shape and spatial relations: the role of receptive field size in coordinating complementary representations. Cogn Sci 18:361–386

    Article  Google Scholar 

  • Jager G, Postma A (2003) On the hemispheric specialization for categorical and coordinate spatial relations: a review of the current evidence. Neuropsychologia 41(4):504–515

    Article  PubMed  Google Scholar 

  • Kinnear PR, Sahraie A (2002) New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5–22 and for decades 30–70. Br J Ophthalmol 86(12):1408–1411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kitterle FL, Christman S, Hellige JB (1990) Hemispheric-differences are found in the identification, but not the detection, of low versus high spatial-frequencies. Percept Psychophys 48(4):297–306

    Article  CAS  PubMed  Google Scholar 

  • Kosslyn SM, Koenig O, Barrett A, Cave CB, Tang J, Gabrieli DE (1989) Evidence for 2 types of spatial representations: hemispheric-specialization for categorical and coordinate relations. J Exp Psychol Hum Percept Perform 15(4):723–735

    Article  CAS  PubMed  Google Scholar 

  • Laeng B (2014) Representation of spatial relations. In: Ochsner K, Kosslyn SM (eds) The Oxford handbook of cognitive neuroscience, core topics, vol 1. Oxford University Press, Oxford, pp 28–59

    Google Scholar 

  • Laeng B, Shah J, Kosslyn SM (1999) Identifying objects in conventional and contorted poses: contributions of hemisphere-specific mechanisms. Cognition 70(1):53–85

    Article  CAS  PubMed  Google Scholar 

  • Laeng B, Chabris CF, Kosslyn SM (2003) Asymmetries in encoding spatial relations. In: Hugdahl K, Davidson R (eds) The asymmetrical Brain. The MIT Press, Cambridge, MA, pp 303–339

    Google Scholar 

  • Liberman AM, Harris K, Hoffman HS, Griffth B (1957) The discrimination of speech sounds within and across phoneme boundaries. J Exp Psychol 54:358-368

    Google Scholar 

  • Lindsay DT, Brown AM, Reijnen E, Rich AN, Kuzmova JI, Wolfe JM (2010) Color channels, not color appearance or color categories, guide visual search for desaturated color targets. Psychol Sci 21(9):1208–1214

    Article  Google Scholar 

  • Newell FN, Bülthof HH (2002) Categorical perception of familiar objects. Cognition 85:113-143

    Google Scholar 

  • Ojemann G, Ojemann J, Lettich E, Berger M (1989) Cortical language localization in left dominant hemisphere: an electrical-stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Özgen E, Davies IRL (1997) Do linguistic categories affect colour perception? A comparison of English and Turkish perception of blue. Perception 26(Suppl):129

    Google Scholar 

  • Pilling M, Wiggett A, Özgen E, Davies IRL (2003) Is color “categorical perception” really perceptual? Mem Cogn 31:538–551

    Article  Google Scholar 

  • Pollack I, Norman DA (1964) A non-parametric analysis of recognition experiments. Psychon Sci 1(5):125–126

    Article  Google Scholar 

  • Pollack I, Norman DA, Galanter E (1964) An efficient non-parametric analysis of recognition memory. Psychon Sci 1(11):327–328

    Article  Google Scholar 

  • Posner MI, Keele SW (1967) Decay of visual information from a single letter. Science 158(3797):137–139

    Article  CAS  PubMed  Google Scholar 

  • Postma A, Huntjens RJC, Meuwissen M, Laeng B (2006) The time course of spatial memory processing in the two hemispheres. Neuropsychologia 44(10):1914–1918

    Article  PubMed  Google Scholar 

  • Roberson D, Davidoff J (2000) The categorical perception of colors and facial expressions: the effect of verbal interference. Mem Cogn 28:977–986

    Article  CAS  Google Scholar 

  • Roberson D, Davies I, Davidoff J (2000) Color categories are not universal: replications and new evidence from a stone-age culture. J Exp Psychol Gen 129(3):369–398

    Article  CAS  PubMed  Google Scholar 

  • Roberson D, Pak H, Hanley JR (2008) Categorical perception of color in the left visual field is verbally mediated: evidence from Korean. Cognition 107(2):752–762

    Article  PubMed  Google Scholar 

  • Robertshaw S, Sheldon M (1976) Laterality effects in judgment of the identity and position of letters: a signal detection analysis. Q J Exp Psychol 28(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Siok WT, Kay P, Wang WSY, Chan AHD, Chen L, Luke K-K, Tan LH (2009) Language regions of brain are operative in color perception. Proc Natl Acad Sci USA 106:8140–8145

    Article  CAS  Google Scholar 

  • Suegami T, Michimata C (2010) Effects of Stroop interference on categorical perception in simultaneous color discrimination. Percept Mot Skills 110(3):857–878

    Article  PubMed  Google Scholar 

  • Wiggett AJ, Davies IRL (2008) The effect of Stroop interference on the categorical perception. Mem Cogn 36:231–239

    Article  Google Scholar 

  • Winawer AJ, Witthoft N, Frank MC, Wu L, Wade AR, Boroditsky L (2007) Russian blues reveal effects of language on color discrimination. Proc Natl Acad Sci USA 104:7780–7785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Witzel C, Gegenfurtner KR (2011) Is there a lateralized category effect of color? J Vis 13(7):1–33

    Article  Google Scholar 

  • Witzel C, Gegenfurtner KR (2013) Categorical sensitivity to color differences. J Vis 11(12):1–25

    Article  Google Scholar 

  • Yang Q, Bucci MP, Kapoula Z (2002) The latency of saccades, vergence, and combined eye movements in children and in adults. Invest Ophthalmol Vis Sci 43(9):2939–2949

    PubMed  Google Scholar 

  • Zhou K, Mo L, Kay P, Kwok VPY, Ip TNM, Tan LH (2010) Newly trained lexical categories produce lateralized categorical perception of color. Proc Natl Acad Sci USA 107:9974–9978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS (Japan Society for the Promotion of Science) Postdoctoral Fellowship for Research Abroad for TS (H24-794).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Suegami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suegami, T., Aminihajibashi, S. & Laeng, B. Another look at category effects on colour perception and their left hemispheric lateralisation: no evidence from a colour identification task. Cogn Process 15, 217–226 (2014). https://doi.org/10.1007/s10339-013-0595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-013-0595-8

Keywords

Navigation