Skip to main content
Log in

Comparison of Air-Assisted, Vortex-Assisted and Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction for the Determination of BTEX Compounds in Water Samples Prior to GC-FID Analysis

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Three new dispersive liquid–liquid microextraction (DLLME) methods, air-assisted (AA-DLLME), vortex-assisted (VA-DLLME) and ultrasound-assisted (UA-DLLME), were compared from the point of view of their analytical application for preconcentration of trace amounts of benzene, toluene, ethylbenzene and xylene isomers (BTEX) in water samples. In all of these methods, no dispersive solvent is required and dispersion of extractant is carried out by air bubbles, vortex and ultrasound for AA-DLLEM, VA-DLLME, and UA-DLLME, respectively. Advantages and disadvantages of these three liquid phase microextraction methods and their capability in dispersion of a similar extractant phase in sample solutions were comprehensively compared. All other extraction parameters, which have an influence on the microextraction, were also investigated and optimized. Under optimized conditions, analytical figures of merit for the three techniques were determined and compared. It was found that the limit of detection of the three methods is almost the same, while AA-DLLME has a wider linear dynamic range and the shortest analysis time. Enrichment factors of 182, 45 and 245 were achieved for AA-DLLEM, VA-DLLME, and UA-DLLME, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hashemi SH, Kaykhaii M, Khajeh M (2015) Anal Lett 48:1815–1829

    Article  CAS  Google Scholar 

  2. Müller E, Berger R, Blass E, Sluyts D, Pfennig A (1985) Liquid–liquid extraction. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  3. Han D, Row KH (2012) Microchim Acta 176:1–22

    Article  CAS  Google Scholar 

  4. Spietelun A, Marcinkowski Ł, de la Guardia M, Namieśnik J (2014) Talanta 119:34–45

    Article  CAS  Google Scholar 

  5. Rezaee M, Assadi Y, Hosseini MRM, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9

    Article  CAS  Google Scholar 

  6. Mirmoghaddam M, Kaykhaii M, Yahyavi H (2015) Anal Methods 7:8511–8523

    Article  Google Scholar 

  7. Zhang H, Chen X, Jiang X (2011) Anal Chim Acta 689:137–142

    Article  CAS  Google Scholar 

  8. Viñas P, Campillo N, Andruch V (2015) TrAC Trends Anal 68:48–77

    Article  Google Scholar 

  9. Pusvaškienė E, Jurkina A, Vičkačkaitė V (2009) Chemija 20:175–179

    Google Scholar 

  10. Assadi Y, Ahmadi F, Hossieni MM (2010) Chromatographia 71:1137–1141

    Article  CAS  Google Scholar 

  11. Faraji H, Tehrani RMA (2012) Int J Ind Chem 3:1–8

    Article  Google Scholar 

  12. Vickackaite V, Pusvaskiene E (2009) J Sep Sci 32:3512–3520

    Article  CAS  Google Scholar 

  13. Leong MI, Huang SD (2012) J Sep Sci 35:688–694

    Article  CAS  Google Scholar 

  14. Khajeh M, Zadeh FM (2012) Bull Environ Contam Toxicol 89:38–43

    Article  CAS  Google Scholar 

  15. Hashemi M, Jahanshahi N, Habibi A (2012) Desalination 288:93–97

    Article  CAS  Google Scholar 

  16. Kokosa JM (2013) TrAC Trends Anal Chem 43:2–13

    Article  CAS  Google Scholar 

  17. Farajzadeh MA, Khoshmaram L (2013) Food 141:1881–1887

    CAS  Google Scholar 

  18. Zhang L, Chen F, Liu S, Chen B, Pan C (2012) J Sep Sci 35:2514–2519

    Article  CAS  Google Scholar 

  19. Picó Y (2013) TrAC Trends Anal Chem 43:84–99

    Article  Google Scholar 

  20. Rahmani M, Kaykhaii M, Ghasemi E, Tahernejad M (2015) J Chromatogr Sci 53:1210–1216

    Article  CAS  Google Scholar 

  21. Yahyavi H, Kaykhaii M, Hashemi M (2016) RSC Adv 6:2361–2367

    Article  CAS  Google Scholar 

  22. Farajzadeh MA, Mogaddam MRA (2012) Anal Chim Acta 728:31–38

    Article  CAS  Google Scholar 

  23. Yazdi AS, Amiri AH (2008) Es’haghi Z. Chemosphere 71:671–676

    Article  Google Scholar 

  24. Yazdi AS, Amiri AH (2009) Es, hagi Z. Talanta 78:936–941

    Article  Google Scholar 

  25. Kaykhaii M, Moradi M (2008) J Chromatogr Sci 46:413–418

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the University of Sistan and Baluchestan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mashaallah Rahmani.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, M., Kaykhaii, M., Safari, Z. et al. Comparison of Air-Assisted, Vortex-Assisted and Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction for the Determination of BTEX Compounds in Water Samples Prior to GC-FID Analysis. Chromatographia 80, 109–117 (2017). https://doi.org/10.1007/s10337-016-3216-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3216-8

Keywords

Navigation