Skip to main content
Log in

Compound-Specific Isotope Analysis of Amino Acid Labeling with Stable Isotope Nitrogen (15N) in Higher Plants

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Individual free amino acid δ15N values in plant tissue reflect the metabolic pathways involved in their biosynthesis and catabolism and could thus aid understanding of environmental stress and anthropogenic effects on plant metabolism. In this study, compound-specific nitrogen isotope analysis of amino acid by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) was carried out to determine individual free amino acid δ15N values. High correlations were observed between the δ15N values obtained by GC-C-IRMS and elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) determinations, and the mean precision measured was better than 1 ‰. Cation-exchange chromatography was employed to purify the sample, and the difference between prior to and following passage through the resin was within 1 ‰. The amino acid δ15N values of plant leave samples following incubation in 15N-nitrate at different time points were determined. A typical foliar free amino acid 15N-enrichment pattern was found, and glutamine was the most rapidly labeled amino acid; other amino acids derived from the GS-GOGAT cycle were also enriched. The pyruvate family amino acids were labeled less quickly followed by the aromatic amino acids. This study highlighted that amino acid metabolism pathways had a major effect on the δ15N values. With the known amino acid metabolism pathways and δ15N values determined by the presented method, the influence of various external factors on the metabolic cycling of amino acid can be understood well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mustroph A, Barding GA Jr, Kaiser KA, Larive CK, Bailey-Serres J (2014) Plant Cell Environ 37:2366–2380. doi:10.1111/pce.12282

    CAS  Google Scholar 

  2. Mahajan S, Tuteja N (2005) Arch Biochem Biophys 444:139–158. doi:10.1016/j.abb.2005.10.018

    Article  CAS  Google Scholar 

  3. Miflin BJ, Lea P (1977) Ann Rev Plant Physiol 28:299–329

    Article  CAS  Google Scholar 

  4. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) New Phytol 203:32–43. doi:10.1111/nph.12797

    Article  Google Scholar 

  5. Hildebrandt TM, Nunes Nesi A, Araujo WL, Braun HP (2015) Mol Plant 8:1563–1579. doi:10.1016/j.molp.2015.09.005

    Article  CAS  Google Scholar 

  6. Styring AK, Fraser RA, Bogaard A, Evershed RP (2014) Phytochemistry 97:20–29. doi:10.1016/j.phytochem.2013.05.009

    Article  CAS  Google Scholar 

  7. Binder S, Knill T, Schuster J (2007) Physiol Plant 129:68–78. doi:10.1111/j.1399-3054.2006.00800.x

    Article  CAS  Google Scholar 

  8. Suzuki A, Knaff DB (2005) Photosynth Res 83:191–217. doi:10.1007/s11120-004-3478-0

    Article  CAS  Google Scholar 

  9. Hausler RE, Ludewig F, Krueger S (2014) Plant Sci 229:225–237. doi:10.1016/j.plantsci.2014.09.011

    Article  Google Scholar 

  10. Kirma M, Araujo WL, Fernie AR, Galili G (2012) J Exp Bot 63:4995–5001. doi:10.1093/jxb/ers119

    Article  CAS  Google Scholar 

  11. Galili G (2011) Plant Signal Behav 6:192–195

    Article  CAS  Google Scholar 

  12. Krasensky J, Jonak C (2012) J Exp Bot 63:1593–1608. doi:10.1093/jxb/err460

    Article  CAS  Google Scholar 

  13. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) Mol Cell 11:619–633. doi:10.1016/s1097-2765(03)00105-9

    Article  CAS  Google Scholar 

  14. Seifi HS, Van Bockhaven J, Angenon G, Hofte M (2013) Mol Plant Microbe Interact MPMI 26:475–485. doi:10.1094/MPMI-07-12-0176-CR

    Article  CAS  Google Scholar 

  15. Gauthier PP, Lamothe M, Mahé A, Molero G, Nogués S, Hodges M, Tcherkez G (2013) Plant. Cell Environ 36:128–137

    Article  CAS  Google Scholar 

  16. Molero G, Aranjuelo I, Teixidor P, Araus JL, Nogues S (2011) Rapid Commun Mass Spectrom RCM 25:599–607. doi:10.1002/rcm.4895

    Article  CAS  Google Scholar 

  17. Xiao H-Y, Wu L-H, Zhu R-G, Wang Y-L, Liu C-Q (2011) Environ Pollut 159:363–367

    Article  Google Scholar 

  18. Gallais A, Coque M, Quillere I, Prioul JL, Hirel B (2006) New Phytol 172:696–707. doi:10.1111/j.1469-8137.2006.01890.x

    Article  CAS  Google Scholar 

  19. Styring AK, Sealy JC, Evershed RP (2010) Geochim Cosmochim Acta 74:241–251. doi:10.1016/j.gca.2009.09.022

    Article  CAS  Google Scholar 

  20. Sabadel AJM, Woodward EMS, Van Hale R, Frew RD (2016) Food Webs 6:9–18. doi:10.1016/j.fooweb.2015.12.003

    Article  Google Scholar 

  21. Styring AK, Fraser RA, Arbogast R-M, Halstead P, Isaakidou V, Pearson JA, Schäfer M, Triantaphyllou S, Valamoti SM, Wallace M, Bogaard A, Evershed RP (2015) J Archaeol Sci 53:504–515. doi:10.1016/j.jas.2014.11.009

    Article  CAS  Google Scholar 

  22. Paolini M, Ziller L, Laursen KH, Husted S, Camin F (2015) J Agric Food Chem 63:5841–5850. doi:10.1021/acs.jafc.5b00662

    Article  CAS  Google Scholar 

  23. Rubino M, Milin S, D’Onofrio A, Signoret P, Hatte C, Balesdent J (2014) Isot Environ Health Stud 50:516–530. doi:10.1080/10256016.2014.959444

    Article  CAS  Google Scholar 

  24. Ohkouchi N, Tsuda R, Chikaraishi Y, Tanabe K (2012) Mar Biol 160:773–779. doi:10.1007/s00227-012-2132-1

    Article  Google Scholar 

  25. Chikaraishi Y, Steffan SA, Ogawa NO, Ishikawa NF, Sasaki Y, Tsuchiya M, Ohkouchi N (2014) Ecol Evol 4:2423–2449. doi:10.1002/ece3.1103

    Article  Google Scholar 

  26. Metges CC, Petzke KJ (1997) Anal Biochem 247:158–164

    Article  CAS  Google Scholar 

  27. Matson P, Johnson L, Billow C, Miller J, Pu RL (1994) Ecol Appl 4:280–298. doi:10.2307/1941934

    Article  Google Scholar 

  28. Moerdijk-Poortvliet TCW, Stal LJ, Boschker HTS (2014) J Sea Res 92:19–25. doi:10.1016/j.seares.2013.10.002

    Article  Google Scholar 

  29. Krummen M, Hilkert AW, Juchelka D, Duhr A, Schluter HJ, Pesch R (2004) Rapid Commun Mass Spectrom RCM 18:2260–2266. doi:10.1002/rcm.1620

    Article  CAS  Google Scholar 

  30. Federherr E, Willach S, Roos N, Lange L, Molt K, Schmidt TC (2016) Rapid Commun Mass Spectrom RCM 30:944–952. doi:10.1002/rcm.7524

    Article  CAS  Google Scholar 

  31. Styring AK, Kuhl A, Knowles TD, Fraser RA, Bogaard A, Evershed RP (2012) Rapid Commun Mass Spectrom RCM 26:2328–2334. doi:10.1002/rcm.6322

    Article  CAS  Google Scholar 

  32. Jimenez-Martin E, Ruiz J, Perez-Palacios T, Silva A, Antequera T (2012) J Agric Food Chem 60:2456–2463. doi:10.1021/jf2052338

    Article  CAS  Google Scholar 

  33. Corr LT, Berstan R, Evershed RP (2007) Rapid Commun Mass Spectrom RCM 21:3759–3771. doi:10.1002/rcm.3252

    Article  CAS  Google Scholar 

  34. Steven R, Shinebarger MH, Dwight E (2002) Matthews. Anal Chem 74:6244–6251

    Article  Google Scholar 

  35. Hofmann D, Gehre M, Jung K (2003) Isot Environ Health Stud 39:233–244. doi:10.1080/1025601031000147630

    Article  CAS  Google Scholar 

  36. Woo K-L, Chang D-K (1993) J Chromatogr A 638:97–107

    Article  CAS  Google Scholar 

  37. Merritt DA, Hayes JM (1994) J Am SK Mass Spectrum 5:387–397

    Article  CAS  Google Scholar 

  38. Walsh RG, He S, Yarnes CT (2014) Rapid Commun Mass Spectrom RCM 28:96–108. doi:10.1002/rcm.6761

    Article  CAS  Google Scholar 

  39. Arkan T, Molnár-Perl I (2015) Microchem J 121:99–106. doi:10.1016/j.microc.2015.02.007

    Article  CAS  Google Scholar 

  40. Montigon F, Boza J, Fay L (2001) Rapid Commun Mass Spectrom 15:116–123

    Article  CAS  Google Scholar 

  41. Hofmann D, Jung K, Segschneider HJ, Gehre M, Schüürmann G (1995) Isot Environ Health Stud 31:367–375. doi:10.1080/10256019508036284

    Article  CAS  Google Scholar 

  42. Reinnicke S, Juchelka D, Steinbeiss S, Meyer A, Hilkert A, Elsner M (2012) Rapid Commun Mass Spectrom RCM 26:1053–1060. doi:10.1002/rcm.6199

    Article  CAS  Google Scholar 

  43. Molero G, Aranjuelo I, Teixidor P, Araus JL (2011) Rapid Commun Mass Spectrom 25:599–607

    Article  CAS  Google Scholar 

  44. Takano Y, Kashiyama Y, Ogawa NO, Chikaraishi Y, Ohkouchi N (2010) Rapid Commun Mass Spectrom RCM 24:2317–2323. doi:10.1002/rcm.4651

    Article  CAS  Google Scholar 

  45. Cayol M, Capitan P, Prugnaud J, Genest M, Beaufrere B, Obled C (1995) Anal Biochem 227:392–394

    Article  CAS  Google Scholar 

  46. Chikaraishi Y, Takano Y, Ogawa NO, Ohkouchi N (2010) Earth Life Isot 300:365–386

    Google Scholar 

  47. Petzke KJ, Metges CC (2012) Rapid Commun Mass Spectrom RCM 26:195–204. doi:10.1002/rcm.5319

    Article  CAS  Google Scholar 

  48. Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R (2003) Cell Biochem Funct 21:1–9. doi:10.1002/cbf.1003

    Article  CAS  Google Scholar 

  49. Ros R, Munoz-Bertomeu J, Krueger S (2014) Trends Plant Sci 19:564–569. doi:10.1016/j.tplants.2014.06.003

    Article  CAS  Google Scholar 

  50. Munoz-Bertomeu J, Anoman A, Flores-Tornero M, Toujani W, Rosa-Tellez S, Fernie AR, Roje S, Segura J, Ros R (2013) Plant Signal Behav 8:e27104. doi:10.4161/psb.27104

    Article  Google Scholar 

  51. Gauthier PP, Lamothe M, Mahe A, Molero G, Nogues S, Hodges M, Tcherkez G (2013) Plant Cell Environ 36:128–137. doi:10.1111/j.1365-3040.2012.02561.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study work was kindly supported by the National Natural Science Foundation of China through Grants 41425014, 41173027, 41273027 (H. Y. Xiao).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huayun Xiao.

Ethics declarations

Conflict of interest

No conflict exists; all authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animal performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Xiao, H., Zheng, N. et al. Compound-Specific Isotope Analysis of Amino Acid Labeling with Stable Isotope Nitrogen (15N) in Higher Plants. Chromatographia 79, 1197–1205 (2016). https://doi.org/10.1007/s10337-016-3126-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3126-9

Keywords

Navigation