Skip to main content
Log in

Analysis and Experimental Inhibition of Distal Cholesterol Biosynthesis

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

During the last decade, our understanding about the function and biological activity of metabolites has drastically changed. Metabolites previously seen as sole bystanders of biochemical reactions without unique activity are becoming more and more recognized for their biological functions. One class of metabolites for which such a paradigm shift has become evident is cholesterol and its precursors. Here, we will give a brief overview about the post-squalene pathway of cholesterol biosynthesis, its inhibition, the biological functions of its intermediates and put special emphasis on the analysis of the occurring metabolites. We will compare liquid chromatography and gas chromatography-based analysis platforms, describe mass spectrometric fragmentations and explain different derivatization strategies. In addition, we will present a full spectral data set of 27 analytes of which 24 are sterols, synthesized, isolated and characterized in several studies in our laboratories. Finally, with our overview, we hope to assist researchers in the field of cholesterol biosynthesis with the chemical analysis of cholesterol and its physiological as well as non-physiological precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

7-DHC:

7-Dehydrocholesterol

ABS:

Antley–Bixler Syndrome

APCI:

Atmospheric pressure chemical ionization

BSTFA:

N,O-Bis(trimethylsilyl)trifluoroacetamide

DMES:

Dimethylethylsilyl

DTE:

1,4-Dithioerythritol

ECNI:

Electron capture negative ionization

EI:

Electron ionization

ER:

Estrogen receptor

ESI:

Electrospray ionization

FAME:

Fatty acid methyl ester

FF-MAS:

Follicular fluid meiosis-activating sterol

FID:

Flame ionization detection

GC:

Gas chromatography

GC–MS(MS):

Gas chromatography (tandem) mass spectrometry

IT:

Ion trap

LC:

Liquid chromatography

LC–MS(MS):

Liquid chromatography (tandem) mass spectrometry

LXR:

Liver X receptor

MSTFA:

N-Methyl-N-trimethylsilyltrifluoroacetamide

MtBSTFA:

N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide

ODS:

Octadecylsilyl

PCI:

Positive chemical ionization

RRT:

Relative retention time

SC:

Side chain

SLOS:

Smith–Lemli–Opitz syndrome

SPE:

Solid-phase extraction

SIM:

Selected ion monitoring

SIS:

Single ion storage

SREBP:

Sterol response element-binding protein

SRM:

Selected reaction monitoring

tBDMS:

tert-Butyl dimethylsilyl

tBME:

tert-Butyl methyl ether

T-MAS:

Testis meiosis-activating sterol

TMCS:

Trimethylchlorosilane

TMIS:

Trimethyliodosilane

TMS:

Trimethylsilyl

TMSiOH:

Trimethylsilanol

TSIM:

N-(Trimethylsilyl)imidazole

References

  1. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Di Y, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. doi:10.1038/nature08530

  2. Kloos D-P, Lingeman H, Mayboroda OA, Deelder AM, Niessen WMA, Giera M (2014) Analysis of biologically-active, endogenous carboxylic acids based on chromatography-mass spectrometry. Trends Anal Chem. doi:10.1016/j.trac.2014.05.008

  3. Byskov AG, Andersen CY, Nordholm L, Thogersen H, Guoliang X, Wassmann O, Andersen JV, Guddal E, Roed T (1995) Chemical structure of sterols that activate oocyte meiosis. Nature. doi:10.1038/374559a0

  4. Spann NJ, Glass CK (2013) Sterols and oxysterols in immune cell function. Nat Immunol. doi:10.1038/ni.2681

  5. Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, Raetz CR, Wang EW, Kelly SL, Sullards MC, Murphy RC, Merrill AH Jr, Brown HA, Dennis EA, Li AC, Ley K, Tsimikas S, Fahy E, Subramaniam S, Quehenberger O, Russell DW, Glass CK (2012) Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell. doi:10.1016/j.cell.2012.06.054

  6. Rodríguez-Acebes S, de la Cueva P, Fernández‑Hernando C, Ferruelo AJ, Lasunción MA, Rawson RB, Martínez‑Botas J, Gómez‑Coronado D (2009) Desmosterol can replace cholesterol in sustaining cell proliferation and regulating the SREBP pathway in a sterol-Δ24-reductase-deficient cell line. Biochem J. doi:10.1042/BJ20081909

  7. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. doi:10.1038/35036052

  8. Rodgers MA, Villareal VA, Schaefer EA, Peng LF, Corey KE, Chung RT, Yang PL (2012) Lipid metabolite profiling identifies desmosterol metabolism as a new antiviral target for hepatitis C virus. J Am Chem Soc. doi:10.1021/ja207391q

  9. Rodgers MA, Saghatelian A, Yang PL (2009) Identification of an overabundant cholesterol precursor in hepatitis B virus replicating cells by untargeted lipid metabolite profiling. J Am Chem Soc. doi:10.1021/ja809949r

  10. Sánchez-Wandelmer J, Dávalos A, de la Peña G, Cano S, Giera M, Canfrán-Duque A, Bracher F, Martín-Hidalgo A, Fernández-Hernando C, Lasunción MA, Busto R (2010) Haloperidol disrupts lipid rafts and impairs insulin signaling in SH-SY5Y cells. Neuroscience. doi: 10.1016/j.neuroscience.2010.01.051

  11. Blake GJ, Ridker PM (2001) Novel clinical markers of vascular wall inflammation. Circ Res. doi:10.1161/hh2101.099270

  12. Porter FD (2008) Smith-Lemli-Opitz syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet. doi:10.1038/ejhg.2008.10

  13. Chugh A, Ray A, Gupta JB (2003) Squalene epoxidase as hypocholesterolemic drug target revisited. Prog Lipid Res 42:37–50

    Article  CAS  Google Scholar 

  14. Matzno S, Yamauchi T, Gohda M, Ishi N, Katsuura K, Hanasaki Y, Tokunaga T, Itoh H, Nakamura N (1997) Inhibition of cholesterol biosynthesis by squalene epoxidase inhibitor avoids apoptotic cell death in L6 myoblasts. J Lipid Res 38:1639–1648

    CAS  Google Scholar 

  15. Mark M, Müller P, Maier R, Eisele B (1996) Effects of a novel 2,3-oxidosqualene cyclase inhibitor on the regulation of cholesterol biosynthesis in HepG2 cells. J Lipid Res 37:148–158

    CAS  Google Scholar 

  16. Chuang JC, Valasek MA, Lopez AM, Posey KS, Repa JJ, Turley SD (2014) Sustained and selective suppression of intestinal cholesterol synthesis by Ro 48-8071, an inhibitor of 2,3-oxidosqualene:lanosterol cyclase in the BALB/c mouse. Biochem Pharmacol. doi:10.1016/j.bcp.2014.01.031

  17. Lasunción MA, Martín-Sánchez C, Canfrán-Duque A, Busto R (2012) Post-lanosterol biosynthesis of cholesterol and cancer. Curr Opin Pharmacol. doi:10.1016/j.coph.2012.07.001

  18. Lange S, Keller M, Müller C, Oliaro-Bosso S, Balliano G, Bracher F (2013) Aminoproylindenes derived from Grundmann’s ketone as a novel chemotype oxidosqualene cyclase inhibitors. Eur J Med Chem. doi:10.1016/j.ejmech.2013.03.002

  19. Giera M, Plössl F, Bracher F (2007) Fast and easy in vitro screening assay for cholesterol biosynthesis inhibitors in the post-squalene pathway. Steroids. doi:10.1016/j.steroids.2007.04.005

  20. Giera M, Renard D, Plössl F, Bracher F (2008) Lathosterol side chain amides—a new class of human lathosterol oxidase inhibitors. Steroids. doi:10.1016/j.steroids.2007.10.015

  21. Popják G, Meenan A, Parish EJ, Nes WD (1989) Inhibition of cholesterol synthesis and cell growth by 24(R,S),25-iminolanosterol and triparanol in cultured rat hepatoma cells. J Biol Chem 264:6230–6238

    Google Scholar 

  22. Lepesheva GI, Waterman MR (2007) Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta. doi:10.1016/j.bbagen.2006.07.018

  23. Canfrán-Duque A, Casado ME, Pastor Ó, Sánchez-Wandelmer J, de la Peña G, Lerma M, Mariscal P, Bracher F, Lasunción MA, Busto R (2013) Atypical antipsychotics alter cholesterol and fatty acid metabolism in vitro. J Lipid Res. doi:10.1194/jlr.M026948

  24. Beynen AC, Buechler KF, Van der Molen AJ (1981) Inhibition of lipogenesis in isolated hepatocytes by 3-amino-1,2,4-triazole. Toxicology 22:171–178

    Article  CAS  Google Scholar 

  25. Suárez Y, Fernández C, Gómez-Coronado D, Ferruelo AJ, Dávalos A, Martínez-Botas J, Lasunción MA (2004) Synergistic upregulation of low-density lipoprotein receptor activity by tamoxifen and lovastatin. Cardiovasc Res. doi:10.1016/j.cardiores.2004.06.024

  26. König M, Müller C, Bracher F (2013) Stereoselective synthesis of a new class of potent and selective inhibitors of human Δ8/7-sterol isomerase. Bioorg Med Chem. doi:10.1016/j.bmc.2013.01.041

  27. Krojer M, Müller C, Bracher F (2014) Steroidomimetic aminomethyl spiroacetals as novel inhibitors of the enzyme Δ8,7-sterol isomerase in cholesterol biosynthesis. Arch Pharm Pharm Med Chem. doi:10.1002/ardp.201300296

  28. Correa-Cerro LS, Porter FD (2005) 3β-Hydroxysterol Δ7-reductase and the Smith–Lemli–Opitz syndrome. Mol Genet Metab. doi:10.1016/j.ymgme.2004.09.017

  29. Horling A, Müller C, Barthel R, Bracher F, Imming P (2012) A new class of selective and potent 7-dehydrocholesterol reductase inhibitors. J Med Chem. doi:10.1021/jm3006096

  30. Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev. doi:10.1021/cr200021m

  31. Trapani L, Segatto M, Ascenzi P, Pallottini V (2011) Potential role of nonstatin cholesterol lowering agents. IUBMB Life. doi:10.1002/iub.522

  32. Brown AJ (2009) 24(S),25-Epoxycholesterol: a messenger for cholesterol homeostasis. Int J Biochem Cell Biol. doi:10.1016/j.biocel.2009.05.029

  33. Sánchez-Martín CC, Dávalos A, Martín-Sánchez C, de la Peña G, Fernández-Hernando C, Lasunción MA (2007) Cholesterol starvation induces differentiation of human leukemia HL-60 Cells. Cancer Res. doi:10.1158/0008-5472.CAN-06-4093

  34. Liang Y, Besch-Williford C, Aebi J, Mafuvadze B, Cook M, Zou X, Hyder S (2014) Cholesterol biosynthesis inhibitors as potent novel anti-cancer agents: suppression of hormone-dependent breast cancer by the oxidosqualene cyclase inhibitor Ro 48-8071. Breast Cancer Res Treat. doi:10.1007/s10549-014-2996-5

  35. Grinter SZ, Liang Y, Huang S-Y, Hyder S, Zou X (2011) An inverse docking approach for identifying new potential anti-cancer targets. J Mol Graphics Modell. doi:10.1016/j.jmgm2011.01.002

  36. Nishimura T, Kohara M, Izumi K, Kasama Y, Hirata Y, Huang Y, Shuda M, Mukaidani C, Takano T, Tokunaga Y, Nuriya H, Satoh M, Saito M, Kai C, Tsukiyama-Kohara K (2009) Hepatitis C virus impairs p53 via persistent overexpression of 3β-hydroxysterol Δ24-reductase. J Biol Chem. doi:10.1074/jbc.M109.043232

  37. Clark PJ, Thompson AJ, Vock DM, Kratz LE, Tolun AA, Muir AJ, McHutchison JG, Subramanian M, Millington DM, Kelley RI, Patel K (2012) Hepatitis C virus selectively perturbs the distal cholesterol synthesis pathway in a genotype-specific manner. Hepatology. doi:10.1002/hep.25631

  38. Di Stasi D, Vallacchi V, Campi V, Ranzani T, Daniotti M, Chiodini E, Fiorentini S, Greeve I, Prinetti A, Rivoltini L, Pierotti MA, Rodolfo M (2005) DHCR24 gene expression is upregulated in melanoma metastases and associated to resistance to oxidative stress-induced apoptosis. Int J Cancer. doi:10.1002/ijc.20885

  39. Xu F, Rychnovsky SD, Belani JD, Hobbs HH, Cohen JC, Rawson RB (2005) Dual roles for cholesterol in mammalian cells. Proc Natl Acad Sci USA. doi:10.1073/pnas.0503590102

  40. Waterham HR (2006) Defects of cholesterol biosynthesis. FEBS Lett. doi:10.1016/j.febslet.2006.07.027

  41. Herman GE (2003) Disorders of cholesterol biosynthesis: prototypic metabolic malformation syndromes. Hum Mol Genet. doi:10.1093/hmg/ddg072

  42. Liu W, Xu L, Lamberson CR, Merkens LS, Steiner RD, Elias ER, Haas D, Porter NA (2013) Assays of plasma dehydrocholesteryl esters and oxysterols from Smith-Lemli-Opitz syndrome patients. J Lipid Res. doi:10.1194/jlr.M031732

  43. De Fabiani E, Caruso D, Cavaleri M, Galli Kienle M, Galli G (1996) Cholesta-5, 7, 9(11)-trien-3β-ol found in plasma of patients with Smith–Lemli–Opitz syndrome indicates formation of sterol hydroperoxide. J Lipid Res 37:2280–2287

    Google Scholar 

  44. Aleck KA, Bartley DL (1997) Multiple malformation syndrome following fluconazole use in pregnancy: report of an additional patient. Am J Med Genet. doi:10.1002/(SICI)1096-8628(19971031)72:3<253::AID-AJMG1>3.0.CO;2-S

  45. Fernández C, Suárez Y, Ferruelo AJ, Gómez-Coronado D, Lasunción MA (2002) Inhibition of cholesterol biosynthesis by delta22-unsaturated phytosterols via competitive inhibition of sterol delta24-reductase in mammalian cells. Biochem J. doi:10.1042/BJ20011777

  46. Paik YK, Trzaskos JM, Shafiee A, Gaylor JL (1984) Microsomal enzymes of cholesterol biosynthesis from lanosterol. Characterization, solubilization, and partial purification of NADPH-dependent delta 8,14-steroid 14-reductase. J Biol Chem 259:13413–13423

    CAS  Google Scholar 

  47. Sánchez-Wandelmer J, Dávalos A, Herrera E, Giera M, Cano S, de la Peña G, Lasunción MA, Busto R (2009) Inhibition of cholesterol biosynthesis disrupts lipid raft/caveolae and affects insulin receptor activation in 3T3-L1 preadipocytes. Biochim Biophys Acta. doi:10.1016/j.bbamem.2009.05.002

  48. Grimm C, Holdt LM, Chen C-C, Hassan S, Müller C, Jörs S, Cuny H, Kissing S, Schröder B, Butz E, Northoff B, Castonguay J, Luber CA, Moser M, Lüllmann-Rauch R, Fendel C, Klugbauer N, Griesbeck O, Haas A, Mann M, Bracher F, Teupser D, Saftig P, Biel M, Wahl-Schott C (2014) High susceptibility to fatty liver disease in two-pore channel 2 deficient mice. Nat. Commun. doi: 10.1038/ncomms5699

  49. Kumar BS, Chung BC, Lee Y-J, Yi HJ, Lee B-H, Jung BH (2011) Gas chromatography-mass spectrometry-based simultaneous quantitave analytical method for urinary oxysterols and bile acids in rats. Anal Biochem. doi:10.1016/j.ab.2010.09.031

  50. Griffiths WJ, Sjövall J (2010) Bile acids: analysis in biological fluids and tissues. J Lipid Res. doi:10.1194/jlr.R001941-JLR200

  51. Choi MH, Chung BC (2014) Bringing GC-MS profiling of steroids into clinical applications. Mass Spectrom Rev. doi:10.1002/mas.21436

  52. Keller S, Jahreis G (2004) Determination of underivatised sterols and bile acid trimethyl silyl ether methyl esters by gas chromatography–mass spectrometry—single ion monitoring in faeces. J Chromatogr B. doi:10.1016/j.jchromb.2004.09.046

  53. Vollhardt KPC, Schore NE (1999) Organic chemistry, structure and function. WH Freeman and company, New York

    Google Scholar 

  54. Seto H, Fujioka S, Koshino H, Takatsuto S, Yoshida S (2000) Stereo and chemical course of acid-catalyzed double bond migration of cholesta-5,7-dien-3β-ol to 5α-cholesta-8,14-dien-3β-ol. J Chem Soc, Perkin Trans 1. doi:10.1039/B001726O

  55. Batta AK, Salen G, Batta P, Tint GS, Alberts DS, Earnest DL (2002) Simultaneous quantitation of fatty acids, sterols and bile acids in human stool by gas–liquid chromatography. J Chromatogr B. doi:10.1016/S1570-0232(02)00289-1

  56. Matysik S, Klünemann HH, Schmitz G (2012) Gas chromatography–tandem mass spectrometry method for the simultaneous determination of oxysterols, plant sterols, and cholesterol precursors. Clin Chem. doi:10.1373/clinchem.2012.189605

  57. Kloos D-P, Gay E, Lingeman H, Bracher F, Müller C, Mayboroda OA, Deelder AM, Niessen WMA, Giera M (2014) Comprehensive gas chromatography–electron ionisation mass spectrometric analysis of fatty acids and sterols using sequential one-pot silylation: quantification and isotopologue analysis. Rapid Commun Mass Spectrom. doi:10.1002/rcm.6923

  58. Hwang B-S, Wang J-T, Choong Y-M (2003) A simpliefied method for the quantification of total cholesterol in lipids using gas chromatography. J Food Comp Anal. doi:10.1016/S0889-1575(02)00130-8

  59. Müller C, Staudacher V, Krauss J, Giera M, Bracher F (2013) A convenient cellular assay for the identification of the molecular target of ergosterol biosynthesis inhibitors and quantification of their effects on total ergosterol biosynthesis. Steroids. doi:10.1016/j.steroids.2013.02.006

  60. Porter NA (2013) A perspective on free radical autoxidation: the physical organic chemistry of polyunsaturated fatty acid and sterol peroxidation. J Org Chem. doi:10.1021/jo4001433

  61. Paik M-J, Yu J, Hu M-B, Kim S-J,Kim K-R, Ahn Y-H, Choi S, Lee G (2008) Gas chromatographic-mass spectrometric analyses of cholesterol and its precursors in rat plasma as tert-butyldimethylsilyl derivatives. Clin Chim Acta. doi:10.1016/j.cca.2008.06.025

  62. Nakanishi S, Nishino T, Nagai J, Katsuki H (1987) Characterization of nystatin-resistant mutants of Saccharomyces cerevisiae and preparation of sterol intermediates using the mutants. J Biochem 101:535–544

    CAS  Google Scholar 

  63. Saraiva D, Semedo R, da Conceição Castilho M, Silva JM, Ramos F (2011) Selection of the derivatization reagent—the case of human blood cholesterol, its precursors and phytosterols GC–MS analyses. J Chromatogr B. doi:10.1016/j.chromb.2011.10.021

  64. Řimnáčová L, Hušek P, Šimek P (2014) A new method for immediate derivatization of hydroxyl groups by fluroalkyl chloroformates and its application for the determination of sterols and tocopherols in human serum and amniotic fluid by gas chromatography–mass spectrometry. J Chromatogr A. doi:10.2016/j.chroma.2014.03.007

  65. Xu S, Norton RA, Crumley FG, Nes WD (1988). Comparison of the chromatographic properties of sterols, select addional steroids and triterpenoids: gravity-flow column liquid chromatography, thin-layer chromatography, gas-liquid chromatography and high-performance liquid chromatography. J Chromatogr. doi: 10.1016/S0021-9673(01)81462-X

  66. Nes WR (1985). A comparison of methods for the identification of sterols. Methods Enzymol. doi:10.1016/S0076-6879(85)11003-7

  67. Griffiths WJ, Wang Y (2011) Analysis of oxysterol metabolomes. Biochim Biophys Acta. doi:10.1016/j.bbalip.2011.05.012

  68. van den Ouweland JW, Vogeser M, Bächer S (2013) Vitamin D and metabolites measurement by tandem mass spectrometry. Rev Endocr Metab Disord. doi:10.1007/s11154-013-9241-0

  69. Mendiara I, Domeño C, Nerín C (2012) Development of a fast sample treatment for the analysis of free and bonded sterols in human serum by LC–MS. J Sep Sci. doi:10.1002/jssc.201200519

  70. McDonald JG, Smith DD, Stiles AR, Russell DW (2012) A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma, J Lipid Res. doi:10.1194/jlr.D022285

  71. Palmgrén JJ, Töyräs A, Mauriala T, Mönkkönen J, Auriola S (2005) Quantitative determination of cholesterol, sitosterol, and sitostanol in cultured Caco-2 cells by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry, J Chromatogr B. doi:10.1016/j.jchromb.2005.04.029

  72. Ruan B, Shey J, Gerst N, Wilson WK, Schroepfer GJ (1996) Silver ion high pressure liquid chromatography provides unprecedented separation of sterols: application to the enzymatic formation of cholesta-5,8-dien-3β-ol. Proc Natl Acad Sci USA 93:11603–11608

    Article  CAS  Google Scholar 

  73. Christie WW (1987) A stable silver-loaded column for the separation of lipids by high performance liquid chromatography. J High Res Chromatogr 10:148–150

    Article  CAS  Google Scholar 

  74. Nikolova-Damyanova B (2009) Retention of lipids in silver ion high-performance liquid chromatography: facts and assumptions. J Chromatogr A. doi:10.1016/j.chroma.2008.10.097

  75. Saracino MA, Iacono C, Somaini L, Gerra G, Ghedini N, Raggi MA (2014) Multi-matrix assay of cortisol, cortisone and corcicosterone using a combined MEPS-HPLC procedure. J Pharm Biomed Anal. doi:10.1016/j.jpba.2013.10.008

  76. Phenomenex HPLC Application ID No.: 22145 (2014) Steroid panel on Kinetex 2.6u biphenyl 50x3.0 http://www.phenomenex.com/application/print/22145 Accessed 10 July 2014

  77. Shui G, Cheong WF, Jappar IA, Hoi A, Xue Y, Fernandis AZ, Tan BKH, Wenk MR (2011) Derivatization-independent cholesterol analysis in crude lipid extracts by liquid chromatography/mass spectrometry: Applications to a rabbit model for atherosclerosis, J Chromatogr A. doi:10.1016/j.chroma.2011.05.011

  78. Honda A, Yamashita K, Miyazaki H, Shirai M, Ikegami T, Xu GF, Numazawa M, Hara T, Matsuzaki Y (2008) Highly sensitive analysis of sterol profiles in human serum by LC-ESI-MS/MS. J Lipid Res. doi:10.1194/jlr.D800017-JLR200

  79. Kuo MS, Kalbfleisch JM, Rutherford P, Gifford-Moore D, Huang XD, Christie R, Hui K, Gould K, Rekhter M (2008) Chemical analysis of atherosclerotic plaque cholesterol combined with histology of the same tissue, J Lipid Res. doi:10.1194/jlr.D700037-JLR200

  80. Sandhoff R, Brügger B, Jeckel D, Lehmann WD, Wieland FT (1999) Determination of cholesterol at the low picomole level by nano-electrospray ionization tandem mass spectrometry. J Lipid Res 40:126–132

    CAS  Google Scholar 

  81. Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G (2006) High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta. doi:10.1016/j.bbalip.2005.12.007

  82. Quirke JME, Adams CL, Van Berkel GJ (1994) Chemical derivatization for electrospray ionization mass spectrometry. 1. alkyl, halides, alcohols, phenols, thiols, and amines. Anal Chem. doi:10.1021/ac00080a016

  83. Van Berkel GJ, Quirke JM, Tigani RA, Dilley AS, Covey TR (1998) Derivatization for electrospray ionization mass spectrometry. 3. Electrochemically ionizable derivatives. Anal Chem. doi:10.1021/ac00080a016

  84. Johnson DW, ten Brink HJ, Jakobs C (2001) A rapid screening procedure for cholesterol and dehydrocholesterol by electrospray ionization tandem mass spectrometry. J Lipid Res 42:1699–1705

    CAS  Google Scholar 

  85. Jiang X, Ory DS, Han X (2007) Characterization of oxysterols by electrospray ionization tandem mass spectrometry after one-step derivatization with dimethylglycine, Rapid Commun Mass Spectrom. doi:10.1002/rcm.2820

  86. Liu W, Xu L, Lamberson C, Haas D, Korade Z, Porter NA (2014) A highly sensitive method for analysis of 7-dehydrocholesterol for the study of Smith-Lemli-Opitz syndrome. J Lipid Res. doi:10.1194/jlr.D043877

  87. Iida T, Hikosaka M, Goto J, Nambara T (2001) Capillary gas chromtographic behaviour of tert.–hydroxylated steroids by trialkylsilylation. J Chromatogr A. doi:10.1016/S0021-9673(01)01305-X

  88. Gerst N, Ruan B, Pang J, Wilson WK, Schroepfer GJ Jr (1997) An updated look at the analysis of unsaturated C27 sterols by gas chromatography and mass spectrometry. J Lipid Res 38:1685–1701

    CAS  Google Scholar 

  89. Dömötörová M, Kirchner M, Matisová E, de Zeeuw J (2006) Possibilities and limitations of fast GC with narrow-bore columns. J Sep Sci. doi:10.1002/jssc.200500472

  90. de Zeeuw J, Reese S, Cochran J, Grossman S, Kane T, English C (2009) Simplifying the setup for vacuum-outlet GC: using a restriction inside the injection port. J Sep Sci. doi:10.1002/jssc.200900009

  91. Arca M, Montali A, Ciocca S, Angelico F, Cantafora A (1983) An improved gas–liquid chromatographic method for the determination of fecal neutral sterols. J Lipid Res 24:332–335

    CAS  Google Scholar 

  92. Brooks CJW, Horning EC, Young JS (1968) Characterization of sterols by gas chromatography–mass spectrometry of the trimethylsilyl ethers. Lipids 3:391–402

    Article  CAS  Google Scholar 

  93. Vorce SP, Sklerov JH, Kalasinsky KS (2000) Assessment of the ion-trap mass spectrometer for routine qualitative and quantitative analysis of drugs of abuse extracted from urine. J Anal Toxicol. doi:10.1093/jat/24.7.595

  94. Saraf A, Larsson L (1996) Use of gas chromatography/ion-trap tandem mass spectrometry for the determination of chemical markers of microorganisms in organic dust. J Mass Spectrom. doi:10.1002/(SICI)1096-9888(199604)31:4<389::AID-JMS312>3.0.CO;2-H

  95. Goad LJ, Akihisa T (1997) Analysis of sterols. Blackie Academic & Professional, London

    Book  Google Scholar 

  96. Vycudilik W (1977) Die Derivsatisierung in der gaschromatographischen Analyse. Z Rechtsmed 80:197–203

    Article  CAS  Google Scholar 

  97. Macherey–Nagel Derivatization reagents for GC (2014) ftp://mn-net.com/english/Flyer_Catalogs/Chromatography/GC/KATEN200144_Deriv_Flyer_EN_220x200_web.pdf. Accessed 09 July 2014

  98. Rahier A, Benveniste P (1988) Mass spectral identification of phytosterols. In: Nes WD, Parish EJ (eds). Analysis of sterols and other biologically significant isopentenoids, Academic Press, San Diego

  99. Schummer C, Delhomme O, Appenzeller BMR, Wennig R, Millet M (2009) Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta. doi:10.1016/j.talanta.2008.09.043

  100. Renard D, Perruchon J, Giera M, Müller J, Bracher F (2009) Side chain azasteroids and thiasteroids as sterol methyltransferase inhibitors in ergosterol biosynthesis. Biorg Med Chem. doi:10.1016/j.bmc.2009.09.037

  101. Massey IJ, Djerassi C (1979) Mass spectrometry in structural and stereochemical problems. 252. Structural and stereochemical applications of mass spectrometry in the marine sterol field. Synthesis and electron impact induced mass spectral fragmentation of Δ24- andΔ24(28)-3β-hydroxy-Δ5-sterols. J Org Chem 44:2448–2456

    Article  CAS  Google Scholar 

  102. Norton RA, Nes WD (1991). Identification of ergosta-6(7),8(14),25(27)-trien-3β-ol and ergosta-5(6),7(8),25(27)-trien-3β-ol, two new steroidal trienes synthesized by Prototheca wickerhamii. Lipids. doi:10.1007/BF02543980

  103. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1964/bloch-facts.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Giera.

Additional information

Published in the topical collection Recent Developments in Clinical Omics with guest editors Martin Giera and Manfred Wuhrer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 735 kb)

Supplementary material 2 (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giera, M., Müller, C. & Bracher, F. Analysis and Experimental Inhibition of Distal Cholesterol Biosynthesis. Chromatographia 78, 343–358 (2015). https://doi.org/10.1007/s10337-014-2796-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2796-4

Keywords

Navigation