Skip to main content
Log in

Variation and long-term trends in the timing of breeding of different Eurasian populations of Common Redstart Phoenicurus phoenicurus

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2015

This article has been updated

Abstract

Changes in the timing of reproduction of birds should provide good evidence of large-scale climate fluctuations. However, geographically separate populations of one species may respond variably. We analyzed egg laying dates of nine Eurasian populations of the Common Redstart Phoenicurus phoenicurus collected between 1969 and 2010. The timing of breeding differed greatly with latitude: the populations in the north started later, a breeding pair produced only one brood per season and the breeding season was shorter. Both yearly minimum and median first-egg laying dates advanced with increases in local air temperature, but the more northern populations had started at much lower temperatures, which was probably caused by the stimulation of photoperiod. The effects of large-scale climatic patterns (North Atlantic Oscillation, East Atlantic, Scandinavia/Eurasia-1) on the first-egg laying date were low. The egg laying dates advanced over the observed decades in all populations, although at a variable rate. Seven selected populations with the most complete data for the period 1986–2010 revealed an advancement of median first-egg laying dates of 0.11 days/year and 1.31 days/°C. The effect on minimum first-egg laying dates was smaller. The changes observed in two populations in Ural and western Siberia were smaller than those found in more westerly populations (Finland, central Europe). The timing of the start of breeding is probably less affected by climate change than the timing of spring migration, documented by European ornithological stations.

Zusammenfassung

Variation und langfristige Trends im zeitlichen Ablauf der Brut von verschiedenen eurasischen Populationen des Gartenrotschwanzes Phoenicurus phoenicurus

Änderungen der Fortpflanzungszeiträume von Vögeln sollten gute Hinweise auf großräumige Klimaschwankungen geben. Allerdings können geographisch getrennte Populationen einer Art unterschiedlich reagieren. Wir werteten die Eiablagedaten von neun eurasischen Populationen des Gartenrotschwanzes aus dem Zeitraum 1969–2010 aus. Der Brutzeitraum unterschied sich mit dem Breitengrad erheblich: Populationen im Norden beginnen später, ein Brutpaar hat nur eine Brut pro Saison und die Brutsaison ist kürzer. Sowohl die jährlich Frühsten wie auch die mittleren Ersteiablagedaten verfrühten sich mit Erhöhung der lokalen Lufttemperatur, wobei die nördlicheren Populationen schon bei deutlich niedrigeren Temperaturen anfingen, was vermutlich mit einer Stimulation durch die Tageslänge zu erklären ist. Die Auswirkungen von großräumigen Klimamustern (North Atlantic Oscillation, East Atlantic, Scandinavia/Eurasia-1) auf die Ersteiablagetermine waren gering. Der Zeitpunkt der Eiablage verfrühte sich bei allen beobachteten Populationen im Verlauf des Beobachtungszeitraums, allerdings mit unterschiedlicher Geschwindigkeit. Bei sieben ausgewählten Populationen mit den umfangreichsten Datensätzen für den Zeitraum von 1986 bis 2010 lässt sich eine Verfrühung des mittleren Zeitpunkts der ersten Eiablage um 0.11 Tage/Jahr und 1.31 Tage/°C erkennen. Die Auswirkung auf den frühesten Zeitpunkt der ersten Eiablage war geringer. Die Veränderungen, die in zwei Populationen im Ural und in Westsibirien beobachtet werden konnten, waren geringer als bei weiter westlich gelegenen Populationen (Finnland, Mitteleuropa). Der Brutbeginn ist möglicherweise weniger vom Klimawandel als vom Zeitpunkt des Frühjahrszugs abhängig, wie er von europäischen Beobachtungs- und Beringungsstationen dokumentiert wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  • Adamian MS, Klem D, Klem D Jr (1999) Handbook of the birds of Armenia. American University of Armenia, Oakland

    Google Scholar 

  • Ahola M, Laaksonen T, Sippola K, Eeva T, Rainio K, Lehikoinen E (2004) Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob Change Biol 10:1610–1617

    Article  Google Scholar 

  • Bauer Z, Trnka M, Bauerová J, Možný M, Štěpánek P, Bartošová L, Žalud Z (2010) Changing climate and phenological response of great tit and collared flycatcher populations in floodplain forest ecosystems in central Europe. Int J Biometeorol 54:99–111

    Article  PubMed  Google Scholar 

  • Both C, Artemyev AV, Blaauw B, Cowie RJ, Dekhuijzen AJ, Eeva T, Enemar A, Gustafsson L, Ivankina EV, Järvinen A, Metcalfe NB, Nyholm NEI, Potti J, Ravussin P-A, Sanz JJ, Silverin B, Slater FM, Sokolov LV, Török J, Winkel W, Wright J, Zang H, Visser ME (2004) Large-scale geographical variation confirms that climate change causes birds to lay earlier. Proc R Soc Lond B 271:1657–1662

    Article  Google Scholar 

  • Cepák J, Klvaňa P, Škopek J, Schröpfer L, Jelínek M, Hořák D, Formánek J, Zárybnický J (2008) Czech and Slovak bird migration atlas. Aventinum, Praha (in Czech with English summary)

    Google Scholar 

  • Cramp S (1988) The birds of the western Palearctic, vol 5. Oxford University Press, Oxford

    Google Scholar 

  • Croxton PJ, Sparks TH, Cade M, Loxton RG (2006) Trends and temperature effects in the arrival of spring migrants in Portland (United Kingdom) 1959–2005. Acta Ornithol 41:103–111

    Article  Google Scholar 

  • del Hoyo J, Elliot A, Christie D (2006) Handbook of the birds of the world, vol 10. Lynx Edicions, Barcelona

    Google Scholar 

  • Dyrcz A, Halupka L (2009) The response of the Great Reed Warbler Acrocephalus arundinaceus to climate change. J Ornithol 150:39–44

    Article  Google Scholar 

  • Glutz von Blotzheim UN, Bauer KM, Bezzel E (1988) Handbuch der Vögel Mitteleuropas, Band 11. AULA-Verlag, Wiesbaden

    Google Scholar 

  • Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Clim Res 35:37–58

    Article  Google Scholar 

  • Hagemeijer WJM, Blair MJ (1997) The EBCC atlas of European breeding birds: their distribution and abundance. Poyser T. & A.D., London

    Google Scholar 

  • Halkka A, Lehikoinen A, Velmala W (2011) Do long-distance migrants use temperature variations along the migration route in Europe to adjust the timing of their spring arrival? Boreal Environ Res 16:35–48

    Google Scholar 

  • Hope Jones P (1975) The migration of redstarts through and from Britain. Ringing Migr 1:12–17

    Article  Google Scholar 

  • Hušek J, Adamík P (2008) Long-term trends in the timing of breeding and brood size in the Red-Backed Shrike Lanius collurio in the Czech Republic, 1964–2004. J Ornithol 149:97–103

    Article  Google Scholar 

  • Hüppop O, Hüppop K (2003) North Atlantic Oscillation and timing of spring migration in birds. Proc R Soc Lond B 270:233–240

    Article  Google Scholar 

  • Hüppop O, Winkel W (2006) Climate change and timing of spring migration in the long-distance migrant Ficedula hypoleuca in central Europe: the role of spatially different temperature changes along migration routes. J Ornithol 147:344–353

    Article  Google Scholar 

  • Järvinen A (1983) Breeding strategies of hole-nesting passerines in northern Lapland. Ann Zool Fenn 20:129–149

    Google Scholar 

  • Järvinen A (1990) Incubation and nestling periods in hole-nesting passerines in Finnish Lapland. Ornis Fenn 67:65–72

    Google Scholar 

  • Jenkins D, Watson A (2000) Dates of first arrival and song of birds during 1974–99 in mid-Deeside, Scotland. Bird Study 47:249–251

    Article  Google Scholar 

  • Jiguet F, Devictor V, Ottvall R, Van Turnhout C, Van der Jeugd H, Lindström A (2010) Bird population trends are linearly affected by climate change along species thermal ranges. Proc R Soc Lond B 277:3601–3608

    Google Scholar 

  • Kovshar AF (1979) Songbirds in the subalpine of Tien-Shan. Nauka of Kazakh SSR, Alma-Ata (in Russian)

  • Kristensen MW, Tøttrup A, Thorup K (2013) Migration of the Common Redstart (Phoenicurus phoenicurus): a Eurasian songbird wintering in highly seasonal conditions in the west African Sahel. Auk 130:258–264

    Article  Google Scholar 

  • Kuranov BD (2007) Nest biology in urban population of Phoenicurus phoenicurus L. Proc TGU Tomsk 299:207–211 (in Russian with English summary)

    Google Scholar 

  • Lambrechts MM, Blondel J, Maistre M, Perret P (1997) A single response mechanism is responsible for evolutionary adaptive variation in a bird’s laying date. Proc Natl Acad Sci USA 94:5153–5155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrechts MM, Perret P (2000) A long photoperiod overrides non-photoperiodic factors in blue tits’ timing of reproduction. Proc R Soc Lond B 267:585–588

    Article  CAS  Google Scholar 

  • Lehikoinen E, Sparks TH, Zalakevicius M (2004) Arrival and departure dates. Adv Ecol Res 35:1–31

    Article  Google Scholar 

  • McKellar AE, Marra PP, Hannon SJ, Studds CE, Ratcliffe LM (2013) Winter rainfall predicts phenology in widely separated populations of a migrant songbird. Oecologia 172:595–605

    Article  PubMed  Google Scholar 

  • Menzel H (1984) Der Gartenrotschwanz, Neue Brehm-Bücherei 438. A. Ziemsen Verlag, Wittenberg-Lutherstadt

    Google Scholar 

  • Porkert J, Zajíc J (2005) The breeding biology of the common redstart, Phoenicurus phoenicurus, in the central European pine forest. Folia Zool 54:111–122

    Google Scholar 

  • Potti J (2009) Advanced breeding dates in relation to recent climate warming in a Mediterranean montane population of Blue Tits Cyanistes caeruleus. J Ornithol 150:893–901

    Article  Google Scholar 

  • Pulliainen E, Jussila P, Tunkkari PS (1994) Variation in the laying intervals of the Pied Flycatcher and the Redstart. Ornis Fenn 71:109–114

    Google Scholar 

  • Rubolini D, Ambrosini R, Caffi M, Brichetti P, Armiraglio S, Saino N (2007) Long-term trends in first arrival and first egg laying dates of some migrant and resident bird species in northern Italy. Int J Biometeorol 51:553–563

    Article  PubMed  Google Scholar 

  • Ruiter CJS (1941) Observations of the natural history of the Common Redstart, Phoenicurus ph. phoenicurus (L.). Ardea 30:175–214 (in Dutch with English summary)

    Google Scholar 

  • SAS Institute (2000) SAS Online Doc, Version 8. SAS Institute, Carey

  • Sanz JJ (2003) Large-scale effect of climate change on breeding parameters of pied flycatchers in Western Europe. Ecography 26:45–50

    Article  Google Scholar 

  • Schaper SV, Dawson A, Sharp PJ, Caro SP, Visser ME (2012) Individual variation in avian reproductive physiology does not reliably predict variation in laying date. Gen Comp Endocrinol 179:53–62

    Article  CAS  PubMed  Google Scholar 

  • Sokolov LV (2006) Effect of global warming on the timing of migration and breeding of passerine birds in the 20th century. Entomol Rev 86:S59–S81

    Article  Google Scholar 

  • Sparks TH, Huber K, Bland RL, Crick HQP, Croxton PJ, Flood J, Loxton RG, Mason CF, Newnham JA, Tryjanowski P (2007) How consistent are trends in arrival (and departure) dates of migrant birds in the UK? J Ornithol 148:503–511

    Article  Google Scholar 

  • Stervander M, Lindström A, Jonzén N, Anderson A (2005) Timing of spring migration in birds: long-term trends, North Atlantic Oscillation and the significance of different migration routes. JAB 36:210–221

    Google Scholar 

  • Thévenot M, Vernon R, Bergier P (2003) The birds of Morocco. BOU & BOC, Herts

    Google Scholar 

  • Tøttrup AP, Thorup K, Rainio K, Reuven Y, Lehikoinen E, Rahnem C (2008) Avian migrants adjust migration in response to environmental conditions en route. Biol Lett 4:685–688

    Article  PubMed  PubMed Central  Google Scholar 

  • Veistola S, Lehikoinen E, Eeva T, Iso-Iivari L (1996) The breeding biology of the Redstart (Phoenicurus phoenicurus) in a marginal area of Finland. Bird Study 43:351–355

    Article  Google Scholar 

  • Visser ME, Adriaensen F, van Balen JH, Blondel J, Dhondt AA, van Dongen S, du Feu C, Ivankina EV, Kerimov AB, de Laet J, Matthysen E, McCleery R, Orell M, Thomson DL (2003) Variable responses to large-scale climate change in European Parus populations. Proc R Soc Lond B 270:367–372

    Article  Google Scholar 

  • Weidinger K, Král M (2007) Climatic effects on arrival and laying dates in a long-distance migrant, the Collared Flycatcher Ficedula albicollis. Ibis 149:836–847

    Article  Google Scholar 

  • Wernham C, Toms M, Marchant J, Clark J, Siriwardena G, Baillie S (2002) The migration atlas: movements of the birds of Britain and Ireland. BTO, UK

    Google Scholar 

  • Zalakevicius M, Bartkeviciene G, Raudonikis L, Janulaitis J (2006) Spring arrival response to climate change in birds: a case study from eastern Europe. J Ornithol 147:326–343

    Article  Google Scholar 

  • Zink G (1981) Der Zug europäischer Singvögel. Ein Atlas der Wiederfunde beringter Vögel, 3. Lieferung. Vogelzug-Verlag, Möggingen

    Google Scholar 

Download references

Acknowledgments

We warmly thank all collaborators who have provided data on the Common Redstart that could not be used in our study: Azis Aslan, Malcolm Burgess, Zsolt Karcza, Jacques Laesser, Dave Leech, Nicolas Martinez, and Leonid V. Sokolov. We also thank the individuals who helped to contact all the collaborators, above all to Aleksandr V. Artemyev from Russia, Wolfgang Fiedler from Germany, and Martin Weggler from Switzerland. Karel Weidinger kindly read and criticized the manuscript. Meteorological data not supplied by the co-authors were provided by the courtesy of Ladislav Metelka from the Czech Hydrometeorological Institute. Beata Matysioková provided some of the literature on redstart biology. We are grateful to both referees for their valuable comments on the manuscript. We thank Pekka Rahko and Ismo Kreivi for their field assistance. Jan Mirejovsky helped to smooth out the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Porkert.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porkert, J., Gashkov, S., Haikola, J. et al. Variation and long-term trends in the timing of breeding of different Eurasian populations of Common Redstart Phoenicurus phoenicurus. J Ornithol 155, 1045–1057 (2014). https://doi.org/10.1007/s10336-014-1092-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1092-2

Keywords

Navigation