Skip to main content
Log in

Comparative analysis reveals a possible immunity-related absence of blood parasites in Common Gulls (Larus canus) and Black-headed Gulls (Chroicocephalus ridibundus)

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Blood parasites often incur a substantial fitness cost to the infected individuals, sometimes resulting in death of the host. Some bird species, however, are apparently free of blood parasites, presumably due to the lack of exposure to blood parasite vectors. Protective immunity may be also responsible for the absence of infections by haematozoa. In this study, we tested the presence of blood parasites in Common Gulls (Larus canus) and Black-headed Gulls (Chroicocephalus ridibundus) nesting in environments with varying vector exposure. We failed to find blood parasites in Common Gulls irrespective of vector exposure, whereas infection rates of Black-headed Gulls were generally very low. We propose that the absence of haematozoa and low prevalence of blood parasites in these species of gulls is probably not a function of vector exposure and suggest alternative explanations such as enhanced immunity.

Zusammenfassung

Vergleichende Analysen zeigen eine möglicherweise mit dem Immunsystem zusammenhängende Abwesenheit von Blutparasiten bei Sturmmöwen ( Larus canus ) und Lachmöwen ( Chroicocephalus ridibundus )

Blutparasiten bedingen oft substantielle Fitness-Aufwendungen für die betroffenen Individuen, die nicht selten zum Tod des Wirts führen. Manche Vogelarten sind jedoch offensichtlich frei von Blutparasiten, vermutlich deshalb, weil sie deren Überträgern nicht ausgesetzt sind. Diese Art von schützender Immunität ist wahrscheinlich auch dafür verantwortlich, dass es bei ihnen keine durch Hämatozoen bedingte Infektionen gibt. In unserer Studie untersuchten wir das Vorhandensein von Blutparasiten bei Sturm- und Lachmöwen, die ihre Nester in Umgebungen gebaut hatten, in denen sie in unterschiedlicher Weise einer möglichen Übertragung der Parasiten ausgesetzt waren. Unabhängig davon, wie sehr sie einer möglichen Übertragung ausgesetzt waren, konnten wir bei den Sturmmöwen gar keine Blutparasiten nachweisen, und bei den Lachmöwen war die Infektionsrate durchweg sehr niedrig. Wir vermuten deshalb, dass bei diesen Vogelarten das Fehlen von Hämatozoen und die geringe Verbreitung von Blutparasiten nicht davon abhängen, ob und wie sehr sie den Überträgern ausgesetzt sind. Stattdessen vermuten wir hier andere Erklärungen wie z. B. ein stärkeres Immunsystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allander K, Bennett GF (1994) Prevalence and intensity of haematozoan infection in a population of great tits Parus majorr from Gotland, Sweden. J Avian Biol 25(1):69–74

    Article  Google Scholar 

  • Atkinson CT, Forrester DJ, Greiner EC (1988) Pathogenicity of Haemoproteus meleagridis (Haemosporina: Haemoproteidae) in experimentally infected domestic turkeys. J Parasitol 74(2):228–239

    Article  CAS  PubMed  Google Scholar 

  • Atkinson CT, Dusek RJ, Lease JK (2001) Serological responses and immunity to superinfection with avian malaria in experimentally-infected Hawaii Amakihi. J Wildl Dis 37(1):20–27

    Article  CAS  PubMed  Google Scholar 

  • Bennett G (1993) Phylogenetic distribution and possible evolution of the avian species of the Haemoproteidae. Syst Parasitol 26(1):39–44

    Article  Google Scholar 

  • Bennett GF, Earle RA, Du Toit H, Huchzermeyer FW (1992a) A host-parasite catalogue of the haematozoa of the Sub-Saharan birds. J Vet Res 59(1):1–73

    CAS  Google Scholar 

  • Bennett GF, Montgomere R, Seutin G (1992b) Scarcity of haematozoa in birds breeding on the Arctic tundra of North America. Condor 94:289–292

    Article  Google Scholar 

  • Bennett G, Peirce M, Earle RA (1994) An annotated checklist of the valid avian species of Haemoproteus, Leucocytozoon (Apicomplexa: Haemosporida) and Hepatozoon (Apicomplexa: Haemogregarinidae). Syst Parasitol 29(1):61–73

    Article  Google Scholar 

  • Bennett GF, Squiresparsons D, Siikamäki P, Huhta E, Allander K, Hillström L (1995) A comparison of the blood parasites of three Fenno-Scandian populations of the Pied Flycatcher Ficedula hypoleuca. J Avian Biol 26(1):33–38

    Article  Google Scholar 

  • Bensch S, Stjernman M, Hasselquist D, Östman Ö, Hansson B, Westerdahl H, Torres-Pinheiro R (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B 267:1583–1589

    Article  CAS  Google Scholar 

  • Blanco G, Gajon A, Doval G, Martínez F (1998) Absence of blood parasites in Griffon vultures from Spain. J Wildl Dis 34(3):640–643

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Figuerola J et al (1997) Intracolonial differences in the infestation by Haemoproteus lari on yellow-legged gulls Larus cachinnans. Ornis Fenn 74:105–112

    Google Scholar 

  • Bukacinski D, Bukacinska M (2000) The impact of mass outbreaks of black flies (Simuliidae) on the parental behaviour and breeding output of colonial common gulls (Larus canus). Ann Zool Fenn 37(1):43–49

    Google Scholar 

  • Clayton DH, Moore J (1997) Host-parasite evolution: general principles and avian models. Oxford University Press, Oxford

    Google Scholar 

  • Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond B 205:489–511

    Article  CAS  PubMed  Google Scholar 

  • Earle RA, Underhill LG (1993) Absence of haematozoa in some Charadriiformes breeding in the Taimyr Peninsula, Russia. Ardea 81:21–24

    Google Scholar 

  • Engstrom H, Dufva R et al (2000) Absence of haematozoa and ectoparasites in a highly sexually ornamented species, the crested auklet. Waterbirds 23(3):486–488

    Article  Google Scholar 

  • Engstrom H, Dufva R et al (2001) Absence of haematozoa and ectoparasites in a highly sexually ornamented species, the crested auklet. Waterbirds 23(3):486–488

    Article  Google Scholar 

  • Esparza B, Martinez-Abrain A et al (2004) Immunocompetence and the prevalence of haematozoan parasites in two long-lived seabirds. Ornis Fenn 81(1):40–46

    Google Scholar 

  • Figuerola J (1999) Effects of salinity on rates of infestation of waterbirds by haematozoa. Ecography 22(6):681–685

    Article  Google Scholar 

  • Figuerola J, Velarde R et al (1996) Absence of haematozoa in a breeding population of Kentish plover Charadrius alexandrinus in northeast Spain. J Fur Ornithol 137(4):523–525

    Article  Google Scholar 

  • Fokidis BH, Greiner EC et al (2008) Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J Avian Biol 39(3):300–310

    Article  Google Scholar 

  • Forero MG, Tella JL et al (1997) Absence of blood parasites in the red-necked nightjar. J Field Ornithol 68(4):575–579

    Google Scholar 

  • Garvin MC, Greiner EC (2003) Epizootiology of Haemoproteus danilewskyi (Haemosporina : Haemoproteidae) in blue jays (Cyanocitta cristata) in Southcentral Florida. J Wildl Dis 39(1):1–9

    Article  PubMed  Google Scholar 

  • Garvin MC, Homer BL et al (2003) Pathogenicity of Haemoproteus danilewskyi, Kruse, 1890, in blue jays (Cyanocitta cristata). J Wildl Dis 39(1):161–169

    Article  PubMed  Google Scholar 

  • Godfrey DA, Carlson L et al (1987) Quantitative inter-strain comparison of the distribution of choline acetyltransferase activity in the rat cochlear nucleus. Hear Res 31(3):203–209

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Solis J, Abella JC (1997) Negative record of haematozoan parasites on Cory’s shearwater Calonectris diomedea. Ornis Fenn 74(3):153–155

    Google Scholar 

  • Greiner EC, Bennett GF et al (1975) Distribution of the avian hematozoa of North America. Can J Zool 53(12):1762–1787

    Article  CAS  PubMed  Google Scholar 

  • Hellgren O, Waldenström J et al (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90(4):797–802

    Article  CAS  PubMed  Google Scholar 

  • Hellgren O, Bensch S et al (2008) Bird hosts, blood parasites and their vectors—associations uncovered by molecular analyses of blackfly blood meals. Mol Ecol 17(6):1605–1613

    Article  CAS  PubMed  Google Scholar 

  • Hõrak P, Ots I et al (1998) Haematological health state indices of reproducing great tits: a response to brood size manipulation. Funct Ecol 12(5):750–756

    Article  Google Scholar 

  • Ilmonen P, Hakkarainen H et al (1999) Parental effort and blood parasitism in Tengmalm’s owl: effects of natural and experimental variation in food abundance. Oikos 86(1):79–86

    Article  Google Scholar 

  • Isobe T, Suzuki K (1987) Immunoglobulin M and G immune response to Leucocytozoon caulleryi in chickens. Jpn J Vet Sci 49(2):333–339

    Article  CAS  Google Scholar 

  • Jarvi SI, Schultz JJ et al (2002) PCR Diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J Parasitol 88(1):153–158

    Article  PubMed  Google Scholar 

  • Jones HI, Shellam GR (1999) The occurrence of blood-inhabiting protozoa in captive and free-living penguins. Polar Biol 21(1):5–10

    Article  Google Scholar 

  • Jovani R, Tella JL et al (2001) Apparent absence of blood parasites in the patagonian seabird community: Is it related to the marine environment? Waterbirds 24(3):430–433

    Article  Google Scholar 

  • Jovani R, Tella JL et al (2002) Absence of haematozoa on colonial white storks Ciconia ciconia throughout their distribution range in Spain. Ornis Fenn 79(1):41–44

    Google Scholar 

  • Knowles SCL, Palinauskas V, Sheldon BC (2010) Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J Evol Biol 23:557–569

    Article  CAS  PubMed  Google Scholar 

  • Lardeux FJR, Ottenwaelder T (1997) Density of larval Culicoides belkini (Diptera: Ceratopogonidae) in relation to physicochemical variables in different habitats. J Med Entomol 34(4):387–395

    Article  CAS  PubMed  Google Scholar 

  • Lehmann T (1993) Ectoparasites: direct impact on host fitness. Parasitol Today 9(1):8–13

    Article  CAS  PubMed  Google Scholar 

  • Little RM, Earle RA (1994) Lack of avian haematozoa in the Phasianinae of Robben Island. Ostrich 65:343–344

    Google Scholar 

  • Little RM, Earle RA (1995) Sandgrouse (Pterocleidae) and sociable weavers Philetarius socius lack avian haematozoa in semi-arid regions of South Africa. J Arid Environ 30(3):367–370

    Article  Google Scholar 

  • Loye JE, Zuk M (1991) Bird-parasite interactions. Ecology, evolution and behaviour. Oxford University Press, Oxford

    Google Scholar 

  • Martinez-Abrain A, Urios G (2002) Absence of blood parasites in nestlings of the Eleonora’s falcon (Falco eleonorae). J Raptor Res 36(2):139–141

    Google Scholar 

  • Martinez-Abrain A, Merino S et al (2002) Prevalence of blood parasites in two western-Mediterranean local populations of the yellow-legged gull Larus cachinnans michahellis. Ornis Fenn 79(1):34–40

    Google Scholar 

  • Martinez-Abrain A, Esparza B et al (2004) Lack of blood parasites in bird species: does absence of blood parasite vectors explain it all? Ardeola 51(1):225–232

    Google Scholar 

  • Marzal A, Lope Fd et al (2005) Malarial parasites decrease reproductive success: an experimental study in a passerine bird. Oecologia 142(4):541–545

    Article  PubMed  Google Scholar 

  • Masello JF, Choconi RG et al (2006) Blood and intestinal parasites in wild Psittaciformes: a case study of burrowing parrots (Cyanoliseus patagonus). Ornitologia Neotropical 17(4):515–529

    Google Scholar 

  • Massey JG, Graczyk TK et al (1996) Characteristics of naturally acquired Plasmodium relictum capistranoae infections in naive Hawaiian crows (Corvus hawaiiensis) in Hawaii. J Parasitol 82(1):182–185

    Article  CAS  PubMed  Google Scholar 

  • Merino S, Minguez E (1998) Absence of haematozoa in a breeding colony of the storm petrel Hydrobates pelagicus. Ibis 140(1):180–181

    Article  Google Scholar 

  • Merino S, Barbosa A et al (1997) Absence of haematozoa in a wild chinstrap penguin Pygoscelis antarctica population. Polar Biol 18(3):227–228

    Article  Google Scholar 

  • Merino S, Moreno J et al (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc Lond B 267(1461):2507–2510

    Article  CAS  Google Scholar 

  • Merino S, Moreno J et al (2008) Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness. Aust Ecol 33(3):329–340

    Article  Google Scholar 

  • Möller AP (ed) (1997) Parasitism and the evolution of host life history. Host-parasite evolution. Oxford University Press, New York

    Google Scholar 

  • Morales J, Moreno J et al (2004) Associations between immune parameters, parasitism, and stress in breeding pied flycatcher (Ficedula hypoleuca) females. Can J Zool 82(9):1484–1492

    Article  Google Scholar 

  • Onno S (1968) The life span of the common gull and the age structure of its population in Estonia. Commun Baltic Comm Study Bird Migration 5:81–109

    Google Scholar 

  • Ots I, Hõrak P (1998) Health impact of blood parasites in breeding great tits. Oecologia 116(4):441–448

    Article  PubMed  Google Scholar 

  • Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2011) Plasmodium relictum (lineage SGS1) and Plasmodium ashfordi (lineage GRW2): the effects of the co-infection on experimentally infected passerine birds. Exp Parasitol 127:527–533

    Article  PubMed  Google Scholar 

  • Peirce MA (1981a) Distribution and host-parasite checklist of the Hematozoa of birds in Western Europe. J Nat Hist 15(3):419–458

    Article  Google Scholar 

  • Peirce MA (1981b) Haematozoa of British birds: VI. Redescription of Haemoproteus larae Yakunin from the lesser black-backed gull Larus fuscus. Taylor & Francis, London

    Book  Google Scholar 

  • Peirce MA, Brooke M (1993) Failure to detect blood parasites in seabirds from the Pitcairn Islands. Seabird 15:72–75

    Google Scholar 

  • Peirce MA, Prince PA (1980) Hepatozoon albatrossi sp. Nov (Eucoccida : Hepatozoidae) from Diomedea spp. in the Antarctic. J Nat Hist 14(3):447–452

    Article  Google Scholar 

  • Piersma T (1997) Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure. Oikos 80:623–631

    Article  Google Scholar 

  • Quillfeldt P, Martinez J et al (2010) Hemosporidian blood parasites in seabirds-a comparative genetic study of species from Antarctic to tropical habitats. Naturwissenschaften 97(9):809–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quillfeldt P, Arriero E et al (2011) Prevalence of blood parasites in seabirds—a review. Front Zool 8(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  • Randi E, Spina F (1987) an electrophoretic approach to the systematics of italian gulls and terns (aves, laridae and sternidae). Ital J Zool 21(4):317–344

    Google Scholar 

  • Rattiste K (1983) Distribution of the West-Estonian common gull Larus canus in the non-breeding period. Ornis Fenn Suppl 3:616–62

    Google Scholar 

  • Rattiste K, Lilleleht V (1986) Some aspects of the demography of the common gull (Larus canus) in Estonia. Baltic Birds IV. In: Proceedings of the fourth conference on the study and conservation of migratory birds of the baltic basin, Frostavallen, Sweden, Sveriges Ornitologiska Förening

  • Rattiste K, Lilleleht V (1995) Survival rates of breeding common gulls in Estonia. J Appl Stat 22(5–6):1057–1062

    Article  Google Scholar 

  • Ricklefs RE (1992) Embryonic development period and the prevalence of avian blood parasites. Proc Nat Acad Sci USA 89(10):4722–4725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricklefs RE, Fallon SM (2001) Diversification and host switching in avian malaria parasites. Proc R Soc Lond B 269(1494):885–892

    Article  Google Scholar 

  • Ricklefs RE, Swanson BL, Fallon SM, Martinez-Abrain A, Scheuerlein A, Gray J, Latta SC (2005) Community relationships of avian malaria parasites in southern Missouri. Ecol Monogr 75:543–559

    Article  Google Scholar 

  • Ruiz X, Oro D et al (1995) Incidence of a Haemoproteus lari parasitemia in a threatened gull: Larus audouinii. Ornis Fenn 72(4):159–164

    Google Scholar 

  • Rytkönen S, Ilomaki K et al (1996) Absence of blood parasites in willow tits Parus montanus in northern Finland. J Avian Biol 27(2):173–174

    Article  Google Scholar 

  • Sanz JJ, Arriero E et al (2001) Female hematozoan infection reduces hatching success but not fledging success in pied flycatchers Ficedula hypoleuca. Auk 118(3):750–755

    Article  Google Scholar 

  • Schmid-Hempel P (2011) Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, Oxford

    Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defenses and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  CAS  PubMed  Google Scholar 

  • Sol D, Jovani R et al (2000) Geographical variation in blood parasites in feral pigeons: the role of vectors. Ecography 23(3):307–314

    Article  Google Scholar 

  • Sorci G (1995) Repeated measurments of blood parasite levels reveal limited ability for host recovery in the common lizard (Lacerta vivipara). J Parasitol 81(5):825–827

    Article  CAS  PubMed  Google Scholar 

  • Spungis V (2000) A cbecklist of Latvian mosquitoes (Diptera, Culicidae). Eur Mosquito Bull 6:8–11

    Google Scholar 

  • Spuris Z (1974) Divspārņi – Diptera. In: Spuris Z (ed) Latvijas dzīvnieku pasaule. Liesma, Riga

  • Stewart IRK, Ringsby TH et al (1997) Absence of haematozoa in passerines from a Norwegian archipelago. Ornis Fenn 74(4):201–203

    Google Scholar 

  • Tella JL, Gortazar C et al (1995) Apparent lack of effects of a high lousefly infestation (Diptera, Hippoboscidae) on adult colonial alpine swifts. Ardea 83:435–439

    Google Scholar 

  • Tella JL, Forero MG et al (1996) Absence of blood-parasitization effects on lesser kestrel fitness. Auk 113(1):253–256

    Article  Google Scholar 

  • Tella JL, Blanco G et al (1999) Habitat, world geographic range, and embryonic development of hosts explain the prevalence of avian hematozoa at small spatial and phylogenetic scales. Proc Nat Acad Sci USA 96(4):1785–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temple SA (1987) Do predators always capture substandard individuals disproportionately from prey populations? Ecology 68(3):669–674

    Article  Google Scholar 

  • Tomas G, Merino S et al (2005) Stress protein levels and blood parasite infection in blue tits (Parus caeruleus): a medication field experiment. Ann Zool Fenn 42(1):45–56

    Google Scholar 

  • Valera F, Carrillo CM et al (2003) Low prevalence of haematozoa in trumpeter finches Bucanetes githagineus from south-eastern Spain: additional support for a restricted distribution of blood parasites in arid lands. J Arid Environ 55(2):209–213

    Article  Google Scholar 

  • Valkiūnas G (2011) Haemosporidian vector research: marriage of molecular and microscopical approaches is essential. Mol Ecol 20:3084–3086

    Article  PubMed  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC, Boca Raton

    Google Scholar 

  • Valkiūnas G, Bensch S et al (2006) Nested cytochrome b PCR diagnostics underestimate mixed infections of avian blood hemosporidian parasites: microscopy is still essential. J Parasitol 92:418–422

    Article  PubMed  Google Scholar 

  • van Riper C III, Atkinson CT et al (1994) Plasmodia of birds. In: Kreier JP (ed) Parasitic protozoa. Academic, San Diego, pp 73–140

    Chapter  Google Scholar 

  • Wakelin D (1996) Immunity to parasites: how parasitic infections are controlled. Cambridge University Press, Cambridge

    Google Scholar 

  • Zuk M, Stoehr AM (2002) Immune defense and host life history. University of Chicago Press, Chicago

    Book  Google Scholar 

Download references

Acknowledgments

This study was supported by Science Council of Latvia (I.K., T.K.). Financial support was also granted by Estonian Science Foundation grant ETF7190 (K.R., L.S.) and Estonian Ministry of Education and Science through target-financing projects SF0180005s10 and SF0180004s09 and by the EU through the European Regional Development Fund (Center of Excellence Frontiers in Biodiversity Research), and the Academy of Finland (M.J.R., I.K.). We thank Jolanta Vrublevska and Inese Kivleniece for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrikis Krams.

Additional information

Communicated by L. Fusani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krams, I., Suraka, V., Rattiste, K. et al. Comparative analysis reveals a possible immunity-related absence of blood parasites in Common Gulls (Larus canus) and Black-headed Gulls (Chroicocephalus ridibundus). J Ornithol 153, 1245–1252 (2012). https://doi.org/10.1007/s10336-012-0859-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-012-0859-6

Keywords

Navigation