Skip to main content
Log in

The two hemispheres of the avian brain: their differing roles in perceptual processing and the expression of behavior

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The hemispheres of the avian brain are specialized to carry out different functions. Since each eye sends its input mainly to the contralateral hemisphere, birds respond differently to stimuli seen with the left eye than they do to stimuli seen with the right eye. The right hemisphere attends to novel stimuli, which easily distract it from ongoing functions. It assumes control in emergency or stressful conditions. The left hemisphere attends to learnt categories and controls behavior in routine, non-stressful situations. This division of function extends to processing of auditory, olfactory and even magnetic stimuli. Evidence for this comes from a number of avian species, and has been shown in both laboratory and field tests. Knowledge of these specializations is relevant to understanding the behavior of birds in the wild since birds respond in different ways to stimuli on their left and right sides (e.g. preferential response to predators and conspecific on the left side and to prey on the right side) and they choose to view different stimuli with the left or right eye. Individual differences in the strength of visual lateralization are determined by exposure of the embryo to light, versus incubation in the dark, and by the levels of steroid hormones in ovo. The importance of these influences on lateralization is discussed in terms of behavior in the natural habitat. The potential importance of hemispheric dominance in the welfare of birds is also considered.

Zusammenfassung

Die Hemisphären des Vogelhirns sind darauf spezialisiert, verschiedene Funktionen auszuführen. Da jedes Auge Eingänge (input) hauptsächlich zur kontralateralen Hemisphäre schickt, reagieren Vögel in unterschiedlicher Weise auf Stimuli, die sie mit dem linken oder rechten Auge gesehen haben. Die rechte Hemisphäre reagiert auf neue Stimuli, die leicht von alltäglichen Funktionen ablenken. Sie übernimmt auch Kontrolle in Notfällen oder Stress. Die linke Hemisphäre reagiert auf erlernte Kategorien und kontrolliert Verhalten in Routine and nicht-stressigen Situationen. Diese Funktionstrennung gilt auch in der Verarbeitung von visuellen, olfaktorischen und selbst magnetischen Stimuli. Beweise dazu sind bekannt in einer Reihe von Vogelarten und sind in Feld- und Labortests nachgewiesen worden. Erkenntnis dieser Spezialisierungen ist relevant zum Verständnis des Verhaltens von Vögeln in der Wildnis, da Vögel in verschiedener Weise auf Stimuli auf ihrer rechten oder linken Seite reagieren (z.B.: bevorzugterweise auf der linken Seite für Raubtiere und Artgenossen und auf der rechten Seite für Beutetiere), und sie wählen das linke oder rechte Auge, um verschiedene Stimuli zu betrachten. Individuelle Unterschiede in der Stärke der Lateralisierung sind abhängig davon, ob Embryos dem Licht ausgesetzt sind, oder in Dunkelheit bebrütet werden, oder aber von der Menge an steroiden Hormonen in ovo. Die Bedeutung dieser Einflüsse auf Lateralisierung werden hier in Bezug auf Tierverhalten im natürlichen Habitat diskutiert. Die potentielle Bedeutung von Gehirn-hemisphärischer Dominanz in der Wohlfahrt von Vögeln ist ebenso berücksichtigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonso Y (1998) Lateralization of visual guided behaviour during feeding in zebra finches (Taeniopygia guttata). Behav Process 43:257–263

    Article  Google Scholar 

  • Andrew RJ (1966) Precocious adult behaviour in the young chick. Anim Behav 14:485–580

    Article  PubMed  CAS  Google Scholar 

  • Andrew RJ, Rogers LJ (2002) The nature of lateralization in tetrapods. In: Rogers LJ, Andrew RJ (eds) Comparative vertebrate lateralization. Cambridge University Press, New York, pp 94–125

    Chapter  Google Scholar 

  • Andrew RJ, Johnston ANB, Robins A, Rogers LJ (2004) Light experience and the development of behavioural lateralisation in chicks. II. Choice of familiar versus unfamiliar model social partner. Behav Brain Res 155:67–76

    Article  PubMed  Google Scholar 

  • Anfora G, Frasnelli E, Maccagnani B, Rogers LJ, Vallortigara G (2010) Behavioural and electrophysiological lateralization in social (Apis mellifera) but not non-social (Osmia cornuta) species of bee. Behav Brain Res 206:236–239

    Article  PubMed  Google Scholar 

  • Austin N, Rogers LJ (2011) Limb preferences and lateralization of aggression, reactivity and vigilance in feral horses (Equus caballus). Anim Behav (in press)

  • Bingman VP, Gagliardo A (2006) Of birds and men: convergent evolution in hippocampal lateralization and spatial cognition. Cortex 42:99–100

    Article  PubMed  Google Scholar 

  • Brown C, Margat M (2011) Cerebral lateralization determines hand preferences in Australian parrots. Biol Lett 7:496–498

    Google Scholar 

  • Bullock SP, Rogers LJ (1992) Hemispheric specialization for the control of copulation in the young chick, and effects of 5a-dihydrotestosterone and 17β-oestradiol. Behav Brain Res 48:9–14

    Article  PubMed  CAS  Google Scholar 

  • Burt DM, Perret DI (1997) Perceptual asymmetries in judgements of facial attractiveness, age, gender, speech and expression. Neuropsychologia 35:685–693

    Article  PubMed  CAS  Google Scholar 

  • Casperd LM, Dunbar RIM (1996) Asymmetries in the visual processing of emotional cues during agonistic interactions by gelada baboons. Behav Process 37:57–65

    Article  Google Scholar 

  • Chiandetti C, Vallortigara G (2009) Effects of embryonic light stimulation on the ability to discriminate left from right in the domestic chick. Behav Brain Res 198:204–246

    Article  Google Scholar 

  • Chiandetti C, Regolin L, Rogers LJ, Vallortigara G (2005) Effects of light stimulation in embryo on the use of position-specific and object-specific cues in binocular and monocular chicks (Gallus gallus). Behav Brain Res 163:10–17, Erratum (2007) Behav Brain Res 177:175

    Article  PubMed  Google Scholar 

  • Chiarello C, Maxfield L (1996) Varieties of interhemispheric inhibition, or how to keep a good hemisphere down. Brain Cogn 30:81–108

    Article  PubMed  CAS  Google Scholar 

  • Clayton NS, Krebs JR (1994) Memory for spatial and object-specific cues in food-storing and non-storing birds. J Comp Physiol A 174:371–379

    Google Scholar 

  • Daisley JN, Mascalzoni E, Rosa-Salva O, Rugani R, Regolin L (2009) Lateralization of social cognition in the domestic chicken (Gallus gallus). Philos Trans R Soc Lond B 364:965–981

    Google Scholar 

  • Daisley JN, Vallortigara G, Regolin L (2010) Logic in an asymmetrical (social) brain: transitive inference in the young domestic chick. Soc Neurosci 5:309–319

    Article  PubMed  Google Scholar 

  • Deckel AW (1995) Lateralization of aggressive responses in Anolis. J Exp Zool 272:194–200

    Article  Google Scholar 

  • Denenberg VH (1981) Hemispheric laterality in animals and the effects of early experience. Behav Brain Sci 4:1–49

    Article  Google Scholar 

  • Deng C, Rogers LJ (1997) Differential contributions of the two visual pathways to functional lateralization in chicks. Behav Brain Res 87:173–182

    Article  PubMed  CAS  Google Scholar 

  • Deng C, Rogers LJ (2002a) Factors affecting the development of lateralization in chicks. In: Rogers LJ, Andrew RJ (eds) Comparative vertebrate lateralization. Cambridge University Press, Cambridge, pp 206–246

    Chapter  Google Scholar 

  • Deng C, Rogers LJ (2002b) Social recognition and approach in the chick: lateralization and effect of visual experience. Anim Behav 63:697–706

    Article  Google Scholar 

  • Dharmaretnam M, Andrew RJ (1994) Age- and stimulus-specific use of the right and left eyes by domestic chick. Anim Behav 48:1395–1406

    Article  Google Scholar 

  • Dharmaretnam M, Rogers LJ (2005) Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behav Brain Res 162:62–70

    Article  PubMed  CAS  Google Scholar 

  • Evans CS, Evans L, Marler P (1993) On the meaning of alarm calls: functional references in avian vocal system. Anim Behav 46:23–28

    Article  Google Scholar 

  • Franklin WE, Lima SL (2001) Laterality in avian vigilance: do sparrows have a favourite eye? Anim Behav 62:879–885

    Article  Google Scholar 

  • Freire R, van Dort S, Rogers LJ (2006) Pre- and post- hatching effects of corticosterone treatment on behaviour of the domestic chick. Horm Behav 49:157–165

    Article  PubMed  CAS  Google Scholar 

  • Ghirlanda S, Vallortigara G (2004) The evolution of brain lateralization: a game theoretical analysis of population structure. Proc R Soc Lond B 271:853–857

    Article  Google Scholar 

  • Groothuis TGG, Carere C, Lipar J, Drent PJ, Schwabl H (2008) Selection on personality in a songbird affects maternal hormone levels tuned to its effect on timing of reproduction. Biol Lett 4:465–467

    Article  PubMed  Google Scholar 

  • Gülbetekin E, Güntürkün O, Dural S, Cetinkaya H (2007) Asymmetry of visually guided sexual behaviour in adult Japanese quail (Coturnix japonica). Laterality 12:321–331

    PubMed  Google Scholar 

  • Güntürkün O (1985) Lateralization of visually controlled behaviour in pigeons. Physiol Behav 34:575–577

    Article  PubMed  Google Scholar 

  • Güntürkün O (2002) Ontogeny of visual asymmetry in pigeons. In: Rogers LJ, Andrew RJ (eds) Comparative vertebrate lateralization. Cambridge University Press, Cambridge, pp 247–273

    Chapter  Google Scholar 

  • Güntürkün O, Hahmann U (1999) Functional subdivisions of the ascending visual pathways in the pigeon. Behav Brain Res 98:193–201

    Article  PubMed  Google Scholar 

  • Güntürkün O, Hoferichter H–H (1985) Neglect after section of the left telencephalotectal tract in pigeons. Behav Brain Res 18:1–9

    Article  PubMed  Google Scholar 

  • Güntürkün O, Hellman B, Melsbach G, Prior H (1998) Asymmetries of representation in the visual system of pigeons. NeuroReport 9:4127–4130

    Article  PubMed  Google Scholar 

  • Güntürkün O, Diekamp B, Manns M, Nottelmann F, Prior H, Schwarz A, Skiba M (2000) Asymmetry pays: visual lateralization improves discrimination success in pigeons. Curr Biol 10:1079–1081

    Article  PubMed  Google Scholar 

  • Guo K, Meints K, Hall C, Hall S, Mills D (2009) Left gaze bias in humans, rhesus monkeys and domestic dogs. Anim Cogn 12:409–418

    Article  PubMed  Google Scholar 

  • Harris L (1989) Footedness in parrots: three centuries of research, theory, and mere speculation. Can J Physiol 43:369–396

    CAS  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC (2000) Retinal asymmetry in birds. Curr Biol 10:115–117

    Article  PubMed  CAS  Google Scholar 

  • Hogue M-E, Beaugrand JP, Lague PC (1996) Coherent use of information by hens observing their former dominant defeating or being defeated by a stranger. Behav Process 38:241–252

    Article  Google Scholar 

  • Hunt GR, Corballis MC, Gray RD (2006) Design complexity and strength of laterality are correlated in new Caledonian crows’ pandanus tool manufacture. Proc R Soc Lond B 273:1127–1133

    Article  Google Scholar 

  • Johnson ANB, Burne THJ, Rose SP (1998) Observation learning in 1 day old chicks using a one-trial passive avoidance learning paradigm. Anim Behav 56:1347–1353

    Article  Google Scholar 

  • Kaplan G, Johnson G, Koboroff A, Rogers LJ (2009) Alarm calls of the Australian magpie (Gymnorhina tibicen): I. Predators elicit complex vocal responses and mobbing behaviour. Open Ornithol J 2:7–16

    Article  Google Scholar 

  • Keysers C, Diekamp B, Güntürkün O (2000) Evidence of physiological asymmetries in the intertectal connections of the pigeon (Columba livia) and their potential role in brain lateralisation. Brain Res 852:406–413

    Article  PubMed  CAS  Google Scholar 

  • Koboroff A, Kaplan G, Rogers LJ (2008) Hemispheric specialization in Australian magpies (Gymnorhina tibicen) shown as eye preferences during response to a predator. Brain Res Bull 76:304–306

    Article  PubMed  Google Scholar 

  • Koshiba M, Nakamura S, Deng C, Rogers LJ (2003) Light-dependent development of asymmetry in the ipsilateral and contralateral thalamofugal visual projections of the chick. Neurosci Lett 336:81–84

    Article  PubMed  CAS  Google Scholar 

  • Kuenzel WJ, Masson M (1988) A stereotaxic atlas of the brain of the chick (Gallus domesticus). Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Land MF (1999) The roles of head movements in the search and capture strategy of a tern (Aves, Laridae). J Comp Physiol A 184:265–272

    Article  Google Scholar 

  • Levy J (1977) The mammalian brain and the adaptive advantage of cerebral asymmetry. Ann NY Acad Sci 299:264–272

    Article  PubMed  CAS  Google Scholar 

  • Lippolis G, Joss JMP, Rogers LJ (2009) Australian lungfish (Neoceratodus forsteri); a missing link in the evolution of complementary side biases for predator avoidance and prey capture. Brain Behav Evol 73:295–303

    Article  PubMed  CAS  Google Scholar 

  • MacNeilage P, Rogers LJ, Vallortigara G (2009) Origins of the left and right brain. Sci Am 301:60–67

    Article  PubMed  Google Scholar 

  • Mandel JT, Ratcliffe JM, Cersale DJ, Winkler DW (2008) Laterality and flight: concurrent tests of side-bias and optimality in flying tree swallows. PLoS ONE 3(3):e1748

    Article  PubMed  CAS  Google Scholar 

  • Margat M, Brown C (2009) Laterality enhances cognition in Australian parrots. Proc R Soc Lond B 276:4155–4162

    Article  Google Scholar 

  • Martin GR (1985) Eye. In: King AS, McLelland J (eds) Form and function in birds, vol 3. Academic, London, pp 311–371

    Google Scholar 

  • Martin GR (2009) What is binocular vision for? A birds’ eye view. J Vis 9:1–19

    Article  PubMed  Google Scholar 

  • Martin GR (2011) Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis 153:239–254

    Article  Google Scholar 

  • McGilchrist I (2009) The master and his emissary. Yale University Press, New Haven

    Google Scholar 

  • McKenzie R, Andrew RJ, Jones RB (1998) Lateralization in chicks and hens: new evidence of control of response by the right eye system. Neuropsychologia 36:51–58

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn J, Haastert B, Rehkämper G (2010) Asymmetry of different brain structures in homing pigeons with and without navigational experience. J Exp Biol 213:2219–2224

    Article  PubMed  Google Scholar 

  • Mench JA, Andrew RJ (1986) Lateralization of a food search task in the domestic chick. Behav Neural Biol 46:107–114

    Article  PubMed  CAS  Google Scholar 

  • Miklósi A, Andrew RJ, Dharmaretnam M (1996) Auditory lateralisation: shifts in ear use during attachment in the domestic chick. Laterality 1:215–224

    Article  PubMed  Google Scholar 

  • Parsons CH, Rogers LJ (1993) Role of the tectal and posterior commissures in lateralization in the avian brain. Behav Brain Res 54:153–164

    Article  PubMed  CAS  Google Scholar 

  • Peirce JW, Leigh AE, Kendrick KM (2000) Configurational coding, familiarity and the right hemisphere advantage for face recognition in sheep. Neuropsychologia 38:475–483

    Article  PubMed  CAS  Google Scholar 

  • Robins A, Rogers LJ (2004) Lateralised prey catching responses in the toad (Bufo marinus): analysis of complex visual stimuli. Anim Behav 68:567–575

    Article  Google Scholar 

  • Robins R, Rogers LJ (2006) Lateralized visual and motor responses in the green tree frog (Litoria caerulea). Anim Behav 72:843–852

    Article  Google Scholar 

  • Robins A, Lippolis G, Bisazza A, Vallortigara G, Rogers LJ (1998) Lateralization of agonistic responses and hind-limb use in toads. Anim Behav 56:875–881

    Article  PubMed  Google Scholar 

  • Rogers LJ (1980) Lateralisation in the avian brain. Bird Behav 2:1–12

    Article  Google Scholar 

  • Rogers LJ (1982) Light experience and asymmetry of brain function in chickens. Nature 297:223–225

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ (1990) Light input and the reversal of functional lateralization in the chicken brain. Behav Brain Res 38:211–221

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ (1995) The development of brain and behaviour in the chicken. CAB International, Oxon

    Google Scholar 

  • Rogers LJ (1997) Early experiential effects on laterality: research on chicks has relevance to other species. Laterality 2:199–219

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ (2000) Evolution of hemispheric specialisation: advantages and disadvantages. Brain Lang 73:236–253

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ (2002) Lateralization in vertebrates: its early evolution, general pattern and development. In: Slater PJB, Rosenblatt J, Snowdon C, Roper T (eds) Advances study behaviour, vol 31. Academic, San Diego, pp 107–162

    Google Scholar 

  • Rogers LJ (2007) Lateralization in its many forms, and its evolution and development. In: Hopkins WD (ed) The evolution of hemispheric specialization in primates, special topics in primatology, vol 5. Elsevier, Amsterdam, pp 23–56

    Google Scholar 

  • Rogers LJ (2008) Development and function of lateralization in the avian brain. Brain Res Bull 76:235–244

    Article  PubMed  Google Scholar 

  • Rogers LJ (2010) Relevance of brain and behavioural lateralization to animal welfare. Appl Anim Behav Sci 127:1–11

    Article  Google Scholar 

  • Rogers LJ, Anson JM (1979) Lateralisation of function in the chicken fore-brain. Pharm Biochem Behav 10:679–686

    Article  CAS  Google Scholar 

  • Rogers LJ, Deng C (1999) Light experience and lateralization of the two visual pathways in the chick. Behav Brain Res 98:277–287

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ, Kaplan G (2006) An eye for a predator: lateralization in birds, with particular reference to the Australian magpie. In: Malashichev YB, Deckel AW (eds) Behavioral and morphological asymmetries in vertebrates. Landes Bioscience, George Town, pp 47–57

    Google Scholar 

  • Rogers LJ, Rajendra S (1993) Modulation of the development of light-initiated asymmetry in chick thalamofugal visual projections by oestradiol. Exp Brain Res 93:89–94

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ, Sink HS (1988) Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure. Exp Brain Res 70:378–384

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ, Workman L (1989) Light exposure during incubation affects competitive behaviour in domestic chicks. App Anim Behav Sci 23:187–198

    Article  Google Scholar 

  • Rogers LJ, Zappia JV, Bullock SP (1985) Testosterone and eye-brain asymmetry for copulation in chickens. Experientia 41:1447–1449

    Article  CAS  Google Scholar 

  • Rogers LJ, Andrew RJ, Burne THJ (1998) Light exposure of the embryo and development of behavioural lateralisation in chicks: I. Olfactory responses. Behav Brain Res 97:195–200

    Article  PubMed  CAS  Google Scholar 

  • Rogers LJ, Zucca P, Vallortigara G (2004) Advantage of having a lateralized brain. Proc R Soc Lond B 271:S420–S422

    Google Scholar 

  • Rogers LJ, Munro U, Freire R, Wiltschko R, Wiltschko W (2008) Lateralized response of chicks to magnetic cues. Behav Brain Res 186:66–71

    Article  PubMed  Google Scholar 

  • Rosa Salva O, Regolin L, Vallortigara G (2007) Chicks discriminate human gaze with their right hemisphere. Behav Brain Res 177:15–21

    Article  PubMed  Google Scholar 

  • Rosa Salva O, Daisley JN, Regolin L, Vallortigara G (2009) Lateralization of social learning in the domestic chick, Gallus gallus domesticus: learning to avoid. Anim Behav 78:847–856

    Article  Google Scholar 

  • Rosa Salva O, Daisley JN, Regolin L, Vallortigara G (2010) Time-dependent lateralization of social learning in the domestic chick (Gallus gallus domesticus): effects of retention delays in the observed lateralized patter. Behav Brain Res 212:152–158

    Article  PubMed  Google Scholar 

  • Schaeffel H, Howard HC (1987) Corneal accommodation in chick and pigeon. J Comp Physiol 160:375–384

    Article  CAS  Google Scholar 

  • Schwabl H (1993) Yolk is a source of maternal testosterone for developing birds. Proc Nat Acad Sci USA 90:11446–11450

    Article  PubMed  CAS  Google Scholar 

  • Schwabl H (1999) Developmental changes and among-sibling variation of corticosterone levels in an altricial avian species. Gen Comp Endocrinol 116:403–408

    Article  PubMed  CAS  Google Scholar 

  • Schwarz IM, Rogers LJ (1992) Testosterone: a role in the development of brain asymmetry in the chick. Neurosci Lett 146:167–170

    Article  PubMed  CAS  Google Scholar 

  • Templeton JJ, Christensen-Dykema JM (2008) A behavioural analysis of prey detection lateralization and unilateral transfer in European starlings (Sturnus vulgaris). Behav Process 79:125–131

    Article  CAS  Google Scholar 

  • Tinbergen N (1951) The study of instinct. Clarendon, Oxford

    Google Scholar 

  • Tucker VA, Tucker AE, Akers K, Enderson JH (2000) Curved flight paths and sideways vision in peregrine falcons (Falco peregrinus). J Exp Biol 203:3755–3763

    PubMed  CAS  Google Scholar 

  • Valenci-Alfonso C-E, Verhaal J, Güntürkün O (2009) Ascending and descending mechanisms of visual lateralization in pigeons. Philos Trans R Soc Lond B 364:955–963

    Google Scholar 

  • Valenti A, Sovrano VA, Zucca P, Vallortigara G (2003) Visual lateralisation in quails (Coturnix coturnix). Laterality 8:67–78

    PubMed  Google Scholar 

  • Vallortigara G (1992) Right hemisphere advantage for social recognition in the chick. Neuropsychologia 9:761–768

    Article  Google Scholar 

  • Vallortigara G (2000) Comparative neuropsychology of the dual brain: a stroll through left and right animals’ perceptual worlds. Brain Lang 73:189–219

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara G, Andrew RJ (1991) Lateralization of response to a change in a model partner by chicks. Anim Behav 41:187–194

    Article  Google Scholar 

  • Vallortigara G, Andrew RJ (1994a) Differential involvement of right and left hemisphere in individual recognition in the domestic chick. Behav Process 33:41–58

    Article  Google Scholar 

  • Vallortigara G, Andrew RJ (1994b) Olfactory lateralization in the chick. Neuropsychologia 32:417–423

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–633

    PubMed  Google Scholar 

  • Vallortigara G, Cozzutti C, Tommasi L, Rogers LJ (2001) How birds use their eyes? Opposite left-right specialisation for the lateral and frontal visual hemifield in the domestic chick. Curr Biol 11:29–33

    Article  PubMed  CAS  Google Scholar 

  • Ventolini N, Ferrero EA, Sponza S, Chiesa AD, Zucca P, Vallortigara G (2005) Laterality in the wild: preferential hemifield use during predatory and sexual behaviour in the black-winged stilt. Anim Behav 69:1077–1084

    Article  Google Scholar 

  • Wichman A, Freire R, Rogers LJ (2009) Light exposure during incubation and social and vigilance behaviour in domestic chicks. Laterality 14:381–394

    PubMed  Google Scholar 

  • Workman L, Andrew RJ (1986) Asymmetries of eye use in birds. Anim Behav 38:1582–1584

    Article  Google Scholar 

  • Workman L, Andrew RJ (1991) Population lateralization in zebra finch courtship: an unresolved issue. Anim Behav 41:545–546

    Article  Google Scholar 

  • Zappia JV, Rogers LJ (1983) Light experience during development affects asymmetry of fore-brain function in chickens. Dev Brain Res 11:93–106

    Article  Google Scholar 

Download references

Acknowledgments

I am most grateful to the Organising Committee of the International Ornithological Conference for the opportunity to present this paper at the meeting in Brazil in 2010. My own research cited in this review was conducted in accordance with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes (NHMRC 2004). I am grateful to Prof. Gisela Kaplan for comments on the manuscript and translating the Abstract into German.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley J. Rogers.

Additional information

Communicated by John Wingfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, L.J. The two hemispheres of the avian brain: their differing roles in perceptual processing and the expression of behavior. J Ornithol 153 (Suppl 1), 61–74 (2012). https://doi.org/10.1007/s10336-011-0769-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0769-z

Keywords

Navigation