Skip to main content
Log in

A GIS-aided two-phase grey fuzzy optimization model for nonpoint source pollution control in a small watershed

  • Article
  • Published:
Paddy and Water Environment Aims and scope Submit manuscript

Abstract

A method for allocating allowable ranges of total nitrogen (TN) load to nonpoint (diffuse pollution) sources in a watershed has been developed by adopting the two-phase grey fuzzy optimization approach. Competing goals of water quality management authorities and TN load dischargers at nonpoint sources such as paddy field, upland crop field, and residential area are described with linear imprecise membership functions including interval numbers. TN load discharged from each cell of the nonpoint sources is assumed to be transported along with surface, subsurface, and river flow under the conventional first-order kinetic removal with respect to distance. The travel length of the load is estimated with a digital elevation model in a geographic information system (GIS). Uncertainty of river discharge and self-purification coefficients appearing in the TN transport model is also expressed with interval numbers. The GIS-aided grey fuzzy optimization model developed here is applied to the Seimei River watershed, Japan. By solving the optimization model, the allowable load represented by an interval number at each cell is procured, which would be a scientific base for effluent control regarding nonpoint sources in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arabi M, Govindaraju RS, Hantush MM (2006) Cost-effective allocation of watershed management practices using a genetic algorithm. Water Resour Res 42:W10429. doi:10.1029/2006WR004931

    Article  Google Scholar 

  • Chang NB, Chen HW, Shaw DG, Yang CH (1997) Water pollution control in river basin by interactive fuzzy interval multiobjective programming. J Environ Eng 123(12):1208–1216

    Article  CAS  Google Scholar 

  • Chen L, Qiu J, Wei G, Shen Z (2015) A preference-based multi-objective model for the optimization of best management practices. J Hydrol 520:356–366

    Article  Google Scholar 

  • Fujita K, Ito H, Oro T, Anma T (2006) A study on evaluation of water environment policy through watershed-scale hydrological & material cycle simulation models to Kasumigaura Lake and its watershed. Project research report of national institute for land and infrastructure management, “Watershed/urban regeneration in accord with nature” technical report (II), pp 3–8 (in Japanese)

  • Ha SR, Jung DI, Yoon CH (1998) A renovated model for spatial analysis of pollutant runoff loads in agricultural watershed. Water Sci Technol 38(10):207–214

    Article  CAS  Google Scholar 

  • Huang GH, Baetz BW, Patry GG (1995) Grey integer programming: an application to waste management planning under uncertainty. Eur J Oper Res 83:594–620

    Article  Google Scholar 

  • Ibaraki Prefecture (2015) White Paper on Environment. Ibaraki Prefecture, p 60 (in Japanese)

  • Ibaraki Prefecture, Tochigi Prefecture, Chiba Prefecture (2012) The Sixth Plan for Water Quality Conservation in Lake Kasumigaura. Ibaraki Prefecture, p 4 (in Japanese)

  • Karmakar S, Mujumdar PP (2006) Grey fuzzy optimization model for water quality management of a river system. Adv Water Resour 29(7):1088–1105

    Article  CAS  Google Scholar 

  • Karmakar S, Mujumdar PP (2007) A two-phase grey fuzzy optimization approach for water quality management of a river system. Adv Water Resour 30:1218–1235

    Article  Google Scholar 

  • King AJ, Rockafellar RT, Somlyódy L, Wets RJ-B (1988) Lake eutrophication management: the Lake Balaton project. In: Ermoliev Y, Wets RJ-B (eds) Numerical techniques for stochastic optimization. Springer, Berlin, pp 435–444

    Chapter  Google Scholar 

  • Kumar A, Maeda S, Kawachi T (2002) Multiobjective optimization of discharged pollutant loads from non-point sources in watershed. Trans Jpn Soc Irrig Drain Reclam Eng 215:117–124

    Google Scholar 

  • Li Z, Huang G, Zhang Y, Li Y (2013) Inexact two-stage stochastic credibility constrained programming for water quality management. Resour Conserv Recycl 73:122–132

    Article  Google Scholar 

  • Li T, Li P, Chen B, Hu M, Zhang X (2014) Simulation-based inexact two-stage chance-constraint quadratic programming for sustainable water quality management under dual uncertainties. J Water Resour Plan Manag 140(3):298–312

    Article  Google Scholar 

  • Liu R, Zhang P, Wang X, Chen Y, Shen Z (2013) Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agric Water Manag 117:9–18

    Article  Google Scholar 

  • Maeda S, Kawachi T, Zhang Q (2006) Grid-based optimization model for allocating allowable discharged total nitrogen to point and nonpoint sources in watershed. Trans Jpn Soc Irrig Drain Reclam Eng 242:1–7

    Google Scholar 

  • Maeda S, Kawachi T, Unami K, Takeuchi J (2009a) Optimal allocations of maximum allowable load among influent rivers: an application for strategic management of lake water quality. Trans Jpn Soc Irrig Drain Reclam Eng 264:1–7

    Google Scholar 

  • Maeda S, Kawachi T, Unami K, Takeuchi J, Izumi T, Chono S (2009b) Fuzzy optimization model for integrated management of total nitrogen loads from distributed point and nonpoint sources in watershed. Paddy Water Environ 7:163–175

    Article  Google Scholar 

  • Maeda S, Kawachi T, Unami K, Takeuchi J, Ichion E (2010a) Controlling wasteloads from point and nonpoint sources to river system by GIS-aided epsilon robust optimization model. J Hydro environ Res 4(1):27–36

    Article  Google Scholar 

  • Maeda S, Yoshikawa K, Takeuchi J, Kawachi T, Chono S, Unami K (2010b) Optimal allocation of maximum allowable discharged total nitrogen load among field plots in agricultural watershed. Trans Jpn Soc Irrig Drain Reclam Eng 265:23–31

    Google Scholar 

  • Martínez A, Rodríguez C, Vázquez-Méndez ME (2000) A control problem arising in the process of waste water purification. J Comput Appl Math 114:67–79

    Article  Google Scholar 

  • Nie XH, Huang GH, Wang D, Li HL (2008) Robust optimization for inexact water quality management under uncertainty. Civil Eng Environ Syst 25(2):167–184

    Article  Google Scholar 

  • Sasikumar K, Mujumdar PP (1998) Fuzzy optimization model for water quality management of a river system. J Water Resour Plan Manag 124(2):79–88

    Article  Google Scholar 

  • Skop E, Sørensen PB (1998) GIS-based modelling of solute fluxes at the catchment scale: a case study of the agricultural contribution to the riverine nitrogen loading in the Vejle Fjord catchment, Denmark. Ecol Model 106:291–310

    Article  CAS  Google Scholar 

  • Tabuchi T, Takamura Y (1985) Outflow of nitrogen and phosphorus from watershed. Tokyo University Press, Tokyo, p 32 (in Japanese)

    Google Scholar 

  • Wagner JM, Shamir U, Nemati HR (1992) Groundwater quality management under uncertainty: stochastic programming approaches and the value of information. Water Resour Res 28(5):1233–1246

    Article  CAS  Google Scholar 

  • Watkins DW, McKinney DC (1997) Finding robust solutions to water resources problems. J Water Resour Plan Manag 123(1):49–58

    Article  Google Scholar 

  • Zhang X, Huang GH, Nie X (2009) Optimal decision schemes for agricultural water quality management planning with imprecise objective. Agric Water Manag 96:1723–1731

    Article  Google Scholar 

  • Zhang X, Huang GH, Nie X (2011) Possibilistic stochastic water management model for agricultural nonpoint source pollution. J Water Resour Plan Manag 137(1):101–112

    Article  Google Scholar 

  • Zhang JL, Li YP, Wang CX, Huang GH (2015) An inexact simulation-based stochastic optimization method for identifying effluent trading strategies of agricultural nonpoint sources. Agric Water Manag 152:72–90

    Article  Google Scholar 

  • Zimmermann H-J (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1:45–55

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported in part by the River Maintenance Fund of River Foundation Grant Number 25-1211-006. The authors acknowledge anonymous reviewers for their valuable comments and suggestions on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeya Maeda.

Appendix

Appendix

The formulation of eight submodels for the grey fuzzy optimization model [Eqs. (6)–(13)] is shown here.

Case 1

Submodels 1 and 2 are formulated and successively solved in Phases 1 and 2, respectively, to produce the upper limit of \(\xi^{ + }\) with optimal \(L_{ji}^{ - }\).

<Phase 1>

Submodel 1:

$${\text{Maximize}}\quad \, \xi^{ + }$$
(16)

subject to

$$T^{ - } \le T^{H + } - \xi^{ + } (T^{H - } - T^{D + } )$$
(17)
$$L_{ji}^{ - } \ge L_{ji}^{L - } + \xi^{ + } (L_{ji}^{D - } - L_{ji}^{L + } ),\quad \forall i,j$$
(18)
$$T^{D - } \le T^{ - } \le T^{H + }$$
(19)
$$L_{ji}^{L - } \le L_{ji}^{ - } \le L_{ji}^{D + } ,\quad \forall i,j$$
(20)
$$0 \le \xi^{ + } \le 1$$
(21)
$$T^{ - } = f(L_{ji}^{ - } ).$$
(22)

Submodel 1 [Eqs. (16)–(22)] can be solved by the simplex method to procure \(L_{ji}^{ - }\). The obtained objective value of \(\xi^{ + }\) is defined as \(\xi_{1}^{ + }\). In the second phase, the smallest values of \(L_{ji}^{ - }\) are pursued with the overall satisfaction level kept at \(\xi_{1}^{ + }\) by solving the following optimization model.

<Phase 2>

Submodel 2:

$${\text{Maximize}}\quad \frac{{T^{H + } - T^{ - } }}{{T^{H - } - T^{D + } }}$$
(23)

subject to

$$\xi^{ + } = \xi_{1}^{ + }$$
(24)
$$T^{ - } \le T^{H + } - \xi^{ + } (T^{H - } - T^{D + } )$$
(25)
$$L_{{j_{i} }}^{ - } \ge L_{{j_{i} }}^{L - } + \xi^{ + } (L_{{j_{i} }}^{D - } - L_{{j_{i} }}^{L + } ),\quad \forall i,j$$
(26)
$$T^{D - } \le T^{ - } \le T^{H + }$$
(27)
$$L_{{j_{i} }}^{L - } \le L_{{j_{i} }}^{ - } \le L_{{j_{i} }}^{D + } ,\quad \forall i,j$$
(28)
$$0 \le \xi^{ + } \le 1$$
(29)
$$T^{ - } = f(L_{{j_{i} }}^{ - } ).$$
(30)

It is noted that the difference between Submodel 1 [Eqs. (16)–(22)] and Submodel 2 [Eqs. (23)–(30)] is appearing in the objective function, Eq. (23), and the additional constraint, Eq. (24). By solving Submodel 2 just after solving Submodel 1, the solution of \(L_{ji}^{ - }\) in Case 1 where the goal of water quality management authorities is prioritized is finally procured.

Next, Submodels 3 and 4 are provided and successively solved in Phases 1 and 2, respectively, to produce the lower limit of \(\xi^{ - }\) with optimal \(L_{ji}^{ + }\).

<Phase 1>

Submodel 3:

$${\text{Maximize}}\quad \xi^{ - }$$
(31)

subject to

$$T^{ + } \le T^{H - } - \xi^{ - } (T^{H + } - T^{D - } )$$
(32)
$$L_{ji}^{ + } \ge L_{ji}^{L + } + \xi^{ - } (L_{ji}^{D + } - L_{ji}^{L - } ),\quad \forall i,j$$
(33)
$$T^{D - } \le T^{ + } \le T^{H + }$$
(34)
$$L_{ji}^{L - } \le L_{ji}^{ + } \le L_{ji}^{D + } ,\quad \forall i,j$$
(35)
$$L_{ji}^{ + } \ge \hat{L}_{ji}^{ - } ,\quad \forall i,j$$
(36)
$$0 \le \xi^{ - } \le 1$$
(37)
$$T^{ + } = f(L_{ji}^{ + } ).$$
(38)

It is noted that the solution of Submodel 2, \(L_{ji}^{ - } = \hat{L}_{ji}^{ - }\), is set as the lower limit of \(L_{ji}^{ + }\) in Eq. (36).

<Phase 2>

Submodel 4:

$${\text{Maximize}}\quad \sum\limits_{j} {\sum\limits_{i} {\frac{{L_{ji}^{ + } - L_{ji}^{L + } }}{{L_{ji}^{D + } - L_{ji}^{L - } }}} }$$
(39)

subject to

$$\xi^{ - } = \xi_{2}^{ - }$$
(40)
$$T^{ + } \le T^{H - } - \xi^{ - } (T^{H + } - T^{D - } )$$
(41)
$$L_{ji}^{ + } \ge L_{ji}^{L + } + \xi^{ - } (L_{ji}^{D + } - L_{ji}^{L - } ),\quad \forall i,j$$
(42)
$$T^{D - } \le T^{ + } \le T^{H + }$$
(43)
$$L_{ji}^{L - } \le L_{ji}^{ + } \le L_{ji}^{D + } ,\quad \forall i,j$$
(44)
$$L_{ji}^{ + } \ge \hat{L}_{ji}^{ - } ,\quad \forall i,j$$
(45)
$$0 \le \xi^{ - } \le 1$$
(46)
$$T^{ + } = f(L_{ji}^{ + } ),$$
(47)

where \(\xi_{2}^{ - }\) in Eq. (40) is the overall satisfaction level obtained in Phase 1, i.e., Submodel 3. Solving Submodel 4 [Eqs. (39)–(47)] results in obtaining the final solution of \(L_{ji}^{ + }\).

Case 2

Submodels 5 and 6 described below are first formulated and successively solved in Phases 1 and 2, respectively, to produce the upper limit of \(\xi^{ + }\) with optimal \(L_{ji}^{ + }\).

<Phase 1>

Submodel 5:

$${\text{Maximize}}\quad \xi^{ + }$$
(48)

subject to

$$L_{ji}^{ + } \ge L_{ji}^{L - } + \xi^{ + } (L_{ji}^{D - } - L_{ji}^{L + } ),\quad \forall i,j$$
(49)
$$T^{ + } \le T^{H + } - \xi^{ + } (T^{H - } - T^{D + } )$$
(50)
$$T^{D - } \le T^{ + } \le T^{H + }$$
(51)
$$L_{ji}^{L - } \le L_{ji}^{ + } \le L_{ji}^{D + } ,\quad \forall i,j$$
(52)
$$0 \le \xi^{ + } \le 1$$
(53)
$$T^{ + } = f(L_{ji}^{ + } ).$$
(54)

Submodel 5 [Eqs. (48)–(54)] is solved to procure \(L_{ji}^{ + }\). The obtained objective value of \(\xi^{ + }\) is specified as \(\xi_{3}^{ + }\). In the second phase, the smallest values of \(L_{ji}^{ + }\) are pursued with the overall satisfaction level kept at \(\xi_{3}^{ + }\) by solving the following optimization model.

<Phase 2>

Submodel 6:

$${\text{Maximize}}\quad \sum\limits_{j} {\sum\limits_{i} {\frac{{L_{ji}^{ + } - L_{ji}^{L - } }}{{L_{ji}^{D - } - L_{ji}^{L + } }}} }$$
(55)

subject to

$$\xi^{ + } = \xi_{3}^{ + }$$
(56)
$$L_{ji}^{ + } \ge L_{ji}^{L - } + \xi^{ + } (L_{ji}^{D - } - L_{ji}^{L + } ),\quad \forall i,j$$
(57)
$$T^{ + } \le T^{H + } - \xi^{ + } (T^{H - } - T^{D + } )$$
(58)
$$T^{D - } \le T^{ + } \le T^{H + }$$
(59)
$$L_{ji}^{L - } \le L_{ji}^{ + } \le L_{ji}^{D + } ,\quad \forall i,j$$
(60)
$$0 \le \xi^{ + } \le 1$$
(61)
$$T^{ + } = f(L_{ji}^{ + } ).$$
(62)

By solving Submodel 6 [Eqs. (55)–(62)] just after solving Submodel 5, the final solution of \(L_{ji}^{ + }\) in the case that the goals of dischargers are prioritized is procured.

Then, Submodels 7 and 8 are created and successively solved in Phases 1 and 2, respectively, to produce the lower limit of \(\xi^{ - }\).

<Phase 1>

Submodel 7:

$${\text{Maximize}}\quad \xi^{ - }$$
(63)

subject to

$$L_{ji}^{ - } \ge L_{ji}^{L + } + \xi^{ - } (L_{ji}^{D + } - L_{ji}^{L - } ),\quad \forall i,j$$
(64)
$$T^{ - } \le T^{H - } - \xi^{ - } (T^{H + } - T^{D - } )$$
(65)
$$T^{D - } \le T^{ - } \le T^{H + }$$
(66)
$$L_{ji}^{L - } \le L_{ji}^{ - } \le L_{ji}^{D + } ,\quad \forall i,j$$
(67)
$$L_{ji}^{ - } \le \hat{L}_{ji}^{ + } ,\quad \forall i,j$$
(68)
$$0 \le \xi^{ - } \le 1$$
(69)
$$T^{ - } = f(L_{ji}^{ - } ).$$
(70)

It is noted that the solution of Submodel 6, \(L_{ji}^{ + } = \hat{L}_{ji}^{ + }\), is set as the upper limit of \(L_{ji}^{ - }\) in Eq. (68).

<Phase 2>

Submodel 8:

$${\text{Maximize}}\quad \frac{{T^{H - } - T^{ - } }}{{T^{H + } - T^{D - } }}$$
(71)

subject to

$$\xi^{ - } = \xi_{4}^{ - }$$
(72)
$$L_{ji}^{ - } \ge L_{ji}^{L + } + \xi^{ - } (L_{ji}^{D + } - L_{ji}^{L - } ),\quad \forall i,j$$
(73)
$$T^{ - } \le T^{H - } - \xi^{ - } (T^{H + } - T^{D - } )$$
(74)
$$T^{D - } \le T^{ - } \le T^{H + }$$
(75)
$$L_{ji}^{L - } \le L_{ji}^{ - } \le L_{ji}^{D + } ,\quad \forall i,j$$
(76)
$$L_{ji}^{ - } \le \hat{L}_{ji}^{ + } ,\quad \forall i,j$$
(77)
$$0 \le \xi^{ - } \le 1$$
(78)
$$T^{ - } = f(L_{ji}^{ - } ),$$
(79)

where \(\xi_{4}^{ - }\) in Eq. (72) is the overall satisfaction level obtained in Phase 1, i.e., Submodel 7. Solving Submodel 8 [Eqs. (71)–(79)] leads to obtaining the final solution of \(L_{ji}^{ - }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, S., Kuroda, H., Yoshida, K. et al. A GIS-aided two-phase grey fuzzy optimization model for nonpoint source pollution control in a small watershed. Paddy Water Environ 15, 263–276 (2017). https://doi.org/10.1007/s10333-016-0545-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10333-016-0545-z

Keywords

Navigation