Skip to main content
Log in

Photochemical reaction of peroxynitrite and carbon dioxide could account for up to 15 % of carbonate radicals generation in surface waters

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

The carbonate radical (CO −·3 ) is a photoinduced transient species occurring in surface waters. The carbonate radical can transform both natural compounds and xenobiotics. For instance, it can react with electron-rich substrates such as anilines, phenols and organic sulfur compounds. Here we used the APEX software to assess photochemical reactions, including the formation rates of transient species, based on water chemistry and depth, under summertime irradiation conditions. We found that the reaction between peroxynitrite and carbon dioxide is a potentially significant source of CO −·3 in sunlit surface waters, and could account for up to 10–15 % of the total CO −·3 formation. The peroxynitrite pathway to CO −·3 would be most significant at pH 7–8 and would be enhanced in waters with elevated nitrate and low alkalinity. Therefore, the proposed process could add to the known photochemical sources of CO −·3 in surface-water environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bodrato M, Vione D (2014) APEX (aqueous photochemistry of environmentally occurring xenobiotics): a free software tool to predict the kinetics of photochemical processes in surface waters. Environ Sci: Processes Impacts 16:732–740

    CAS  Google Scholar 

  • Borghesi D, Vione D, Maurino V, Minero C (2005) Transformations of benzene photoinduced by nitrate salts and iron oxide. J Atmos Chem 52:259–281

    Article  CAS  Google Scholar 

  • Bouillon RC, Miller WL (2005) Photodegradation of dimethyl sulfide (DMS) in natural waters: laboratory assessment of the nitrate-photolysis-induced DMS oxidation. Environ Sci Technol 39:9471–9477

    Article  CAS  Google Scholar 

  • Canonica S, Kohn T, Mac M, Real FJ, Wirz J, Von Gunten U (2005) Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds. Environ Sci Technol 39:9182–9188

    Article  CAS  Google Scholar 

  • Carballal S, Trujillo M, Cuevasanta E, Bartesaghi S, Möller MN, Folkes LK, García-Bereguiaín MA, Gutiérrez-Merino C, Wardman P, Denicola A, Radi R, Alvarez B (2011) Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Rad Biol Med 50:196–205

    Article  CAS  Google Scholar 

  • Carballal S, Bartesaghi S, Radi R (2014) Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim Biophys Acta 1840:768–780

    Article  CAS  Google Scholar 

  • Chen Y, Zhang K, Zuo YG (2013) Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions. Sci Total Environ 463:802–809

    Article  Google Scholar 

  • Chiron S, Barbati S, Khanra S, Dutta BK, Minella M, Minero C, Maurino V, Pelizzetti E, Vione D (2009) Bicarbonate-enhanced transformation of phenol upon irradiation of hematite, nitrate, and nitrite. Photochem Photobiol Sci 8:91–100

    Article  CAS  Google Scholar 

  • Coddington JW, Hurst JK, Lymar SV (1999) Hydroxyl radical formation during peroxynitrous acid decomposition. J Am Chem Soc 121:2438–2443

    Article  CAS  Google Scholar 

  • Denicola A, Freeman BA, Trujillo M, Radi R (1996) Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite mediated oxidations. Arch Biochem Biophys 333:49–58

    Article  CAS  Google Scholar 

  • Drexler C, Elias H, Fecher B, Wannowius KJ (1991) Kinetic investigation of sulfur(IV) oxidation by peroxo compounds R–OOH in aqueous solution. Fresenius J Anal Chem 340:605–615

    Article  CAS  Google Scholar 

  • Goldstein S, Rabani J (2007) Mechanism of nitrite formation by nitrate photolysis in aqueous solutions: the role of peroxynitrite, nitrogen dioxide, and hydroxyl radical. J Am Chem Soc 129:10597–10601

    Article  CAS  Google Scholar 

  • Gupta D, Harish B, Kissner R, Koppenol WH (2009) Peroxynitrate is formed rapidly during decomposition of peroxynitrite at neutral pH. Dalton Trans 29:5730–5736

    Article  Google Scholar 

  • Huang JP, Mabury SA (2000a) Steady-state concentrations of carbonate radicals in field waters. Environ Toxicol Chem 19:2181–2188

    Article  CAS  Google Scholar 

  • Huang JP, Mabury SA (2000b) The role of carbonate radical in limiting the persistence of sulfur-containing chemicals in sunlit natural waters. Chemosphere 41:1775–1782

    Article  CAS  Google Scholar 

  • Kissner R, Koppenol WH (2002) Product distribution of peroxynitrite decay as a function of pH, temperature, and concentration. J Am Chem Soc 124:234–239

    Article  CAS  Google Scholar 

  • Larson RA, Zepp RG (1988) Reactivity of the carbonate radical with aniline derivatives. Environ Toxicol Chem 7:265–274

    Article  CAS  Google Scholar 

  • Logager T, Sehested K (1993) Formation and decay of peroxynitrous acid: a pulse radiolysis study. J Phys Chem 97:6664–6669

    Article  Google Scholar 

  • Lymar SV, Hurst JK (1995) Rapid reaction between peroxonitrite ion and carbon dioxide: implications for biological activity. J Am Chem Soc 117:8867–8868

    Article  CAS  Google Scholar 

  • Mark G, Korth HG, Schuchmann HP, von Sonntag C (1996) The photochemistry of aqueous nitrate ion revisited. J Photochem Photobiol A: Chem 101:89–103

    Article  CAS  Google Scholar 

  • Martell AE, Smith RM, Motekaitis RJ (1997) Critically selected stability constants of metal complexes database, Version 4.0

  • Maurer P, Thomas CF, Kissner R, Rueegger H, Greter O, Rothlisberger U (2003) Oxidation of nitrite by peroxynitrous acid. J Phys Chem A 107:1763–1769

    Article  CAS  Google Scholar 

  • Meli R, Nauser T, Latal P, Koppenol WH (2002) Reaction of peroxynitrite with carbon dioxide: intermediates and determination of the yield of CO −·3 and ·NO2. J Biol Inorg Chem 7:31–36

    Article  CAS  Google Scholar 

  • Molina C, Kissner R, Koppenol WH (2013) Decomposition kinetics of peroxynitrite: influence of pH and buffer. Dalton Trans 42:9898–9905

    Article  CAS  Google Scholar 

  • Polesello S, Tartari G, Giacomotti P, Mosello R, Cavalli S (2006) Determination of total dissolved inorganic carbon in freshwaters by reagent-free ion chromatography. J Chromatogr A 1118:56–61

    Article  CAS  Google Scholar 

  • Pryor WA, Lemercier JN, Zhang H, Uppu RM, Squadrito GL (1997) The catalytic role of carbon dioxide in the decomposition of peroxynitrite. Free Rad Biol Med 23:331–338

    Article  CAS  Google Scholar 

  • Sulzberger B, Canonica S, Egli T, Giger W, Klausen J, von Gunten U (1997) Oxidative transformations of contaminants in natural and in technical systems. Chimia 51:900–907

    CAS  Google Scholar 

  • Thogersen J, Gadegaard A, Nielsen J, Jensen SK, Petersen C, Keiding SR (2009) Primary formation dynamics of peroxynitrite following photolysis of nitrate. J Phys Chem A 113:10488–10494

    Article  Google Scholar 

  • Tixier C, Singer HP, Canonica S, Muller SR (2002) Phototransformation of triclosan in surface waters: a relevant elimination process for this widely used biocide—laboratory studies, field measurements, and modeling. Environ Sci Technol 36:3482–3489

    Article  CAS  Google Scholar 

  • Verma MP, Portugal E, Gangloff S, Armienta MA, Chandrasekharam D, Sanchez M, Renderos RE, Juanco M, van Geldern R (2015) Determination of the concentration of carbonic species in natural waters: results from a world-wide proficiency test. Geostand Geoanal Res 39:233–255

    Article  CAS  Google Scholar 

  • Vione D, Maurino V, Minero C, Pelizzetti E (2005) Nitration and photonitration of naphthalene in aqueous systems. Environ Sci Technol 39:1101–1110

    Article  CAS  Google Scholar 

  • Vione D, Khanra S, Cucu Man S, Maddigapu PR, Das R, Arsene C, Olariu RI, Maurino V, Minero C (2009) Inhibition versus enhancement of the nitrate-induced phototransformation of organic substrates by the ·OH scavengers bicarbonate and carbonate. Water Res 43:4718–4728

    Article  CAS  Google Scholar 

  • Warneck P, Wurzinger C (1988) Product quantum yields for the 305-nm photodecomposition of NO3 in aqueous solution. J Phys Chem 92:6278–6283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Vione.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carena, L., Vione, D. Photochemical reaction of peroxynitrite and carbon dioxide could account for up to 15 % of carbonate radicals generation in surface waters. Environ Chem Lett 14, 183–187 (2016). https://doi.org/10.1007/s10311-016-0549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-016-0549-3

Keywords

Navigation