Skip to main content
Log in

Kinetic investigation of sulfur(IV) oxidation by peroxo compounds R-OOH in aqueous solution

  • Lectures And Posters (Part II)
  • Kinetic Of Inorganic Species In Hydrometeors
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

Normal and rapid-scan stopped-flow spectrophotometry in the range of 260–300 nm was used to study the kinetics of sulfur(IV) oxidation by peroxo compounds R-OOH (such as hydrogen peroxide, R=H; peroxonitrous acid, R=NO; peroxoacetic acid, R=Ac; peroxomonosulfuric acid, R=SO 3 ) in the pH range 2–6 in buffered aqueous solution at an ionic strength of 0.5 M (NaClO4) or 1.0 M (R=NO; Na2SO4). The kinetics follow a three-term rate law, rate=(kH[H]+kHX[HX]+kp)[HSO 3 ][ROOH] ([H] = proton activity; HX = buffer acid = chloroacetic acid, formic acid, acetic acid, H2PO 4 ). Ionic strength effects (I=0.05–0.5 M) and anion effects (Cl, ClO 4 , SO 2−4 ) were not observed. In addition to proton-catalysis (kH[H]) and general acid catalysis (kHX[HX]), the rate constant kp characterizes, most probably, a water induced reaction channel with kp=kHOH[H2O]. It is found that kH≠f(R) with kH(mean)=2.1·107 M−2 s−1 at 298 K. The rate constant kHX ranges from 0.85·106 M−2 s−1 (HX=ClCH2−COOH; R=NO; 293 K) to 0.47·104 M−2 s−1 (HX=H2PO 4 ; R=H; 298 K) and the rate constant kp covers the range 0.2·M−1 s−1 (R=H) to 4.0·104 M−1 s−1 (R=NO). LFE relationships can be established for both kHX, correlating with the pKa of HX, and kp, correlating with the pKa of the peroxo compounds R-OOH. These relationships imply interesting aspects concerning the mechanism of sulfur(IV) oxidation and the possible role of peroxonitrous acid in atmospheric chemistry. A UV-spectrum of the unstable peroxo acid ON-OOH is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calvert JG (1984) In: Acid precipitation series Vol. 3: SO2, NO, NO2 oxidation mechanisms: atmospheric considerations. Butterworth, Boston London, pp 1–62

    Google Scholar 

  2. Penkett SA, Jones BMR, Brice KA, Eggleton AEJ (1979) Atmos Environ 13:123–137

    Google Scholar 

  3. Chandler AS, Choularton TW, Dollard GJ, Gay MJ, Hill TA, Jones A, Jones BMR, Morse AP, Penkett SA, Tyler BJ (1988) Atmos Environ 22:683–694

    Google Scholar 

  4. Pandis SN, Seinfeld JH (1989) J Geophys Res C 94(D1):1105–1126

    Google Scholar 

  5. Jacob DJ, Hoffmann MR (1983) J Geophys Res C 88 (C11):6611–6621

    Google Scholar 

  6. McElroy WJ (1986) Atmos Environ 20:427–438

    Google Scholar 

  7. McElroy WJ (1986) Atmos Environ 20:323–330

    Google Scholar 

  8. Calvert JG (1985) Nature (London) 317 (6032):27–35

    Google Scholar 

  9. Finlayson-Pitts BJ (1986) Atmospheric chemistry — fundamentals and experimental techniques. Wiley, New York

    Google Scholar 

  10. Schwartz SE (1987) Environ Sci 502:83–144

    Google Scholar 

  11. McArdle JV, Hoffmann MR (1983) J Phys Chem 87:5425–5429

    Google Scholar 

  12. Mader PM (1958) J Am Chem Soc 80:2634–2639

    Google Scholar 

  13. Martin LR, Damschen DE (1981) Atmos Environ 15:1615–1621

    Google Scholar 

  14. Hoffmann MR, Edwards JO (1975) J Phys Chem 79:2096–2098

    Google Scholar 

  15. Lind JA, Lazrus AL, Kok GL (1987) J Geophys Res 92:4171–4177

    Google Scholar 

  16. a) Deister U, McElroy WJ, Warneck P (1990) Eurotrac Symposium Garmisch-Partenkirchen, Abstracts of Posters, Talks; b) Deister U, McElroy WJ (1990) Eurotrac Symposium Garmisch-Partenkirchen, Abstracts of Posters, Talks

  17. Betterton EA, Hoffmann MR (1988) J Phys Chem 92:5962–5965

    Google Scholar 

  18. SFB 233 = Sonderforschungsbereich 233 der Deutschen Forschungsgemeinschaft (Projekt C7), Dynamik und Chemie der Hydrometeore

  19. Keith WG, Powell RE (1969) J Chem Soc A 1969:90

    Google Scholar 

  20. Hughes MN, Nicklin HG (1968) J Chem Soc A 1968:450–452

    Google Scholar 

  21. Bips U, Elias H, Hauröder M, Kleinhans G, Pfeifer S, Wannowius KJ (1983) Inorg Chem 22:3862–3865

    Google Scholar 

  22. Elias H, Fröhn U, v. Irmer A, Wannowius KJ (1980) Inorg Chem 19:869–876

    Google Scholar 

  23. Lagrange P, Lagrange J (1990) In: Restelli G, Angeletti G (Eds) Physico-chemical behaviour of atmospheric pollutants. Kluwer Academic Publishers, Dardrecht Boston London, pp 257–262

    Google Scholar 

  24. Drexler C, Elias H, Wannowius KJ, to be published

  25. Gleu K, Roell E (1929) Z Anorg Allg Chem 179:233–266

    Google Scholar 

  26. Hughes MN, Nicklin HG (1971) J Chem Soc A 1971:164–168

    Google Scholar 

  27. Wagner I, Strehlow H, Busse G (1980) Z Phys Chem NF 123:1–33

    Google Scholar 

  28. Petriconi GL, Papee HM (1968) J Inorg Nucl Chem 30:1525–1535

    Google Scholar 

  29. Benton DJ, Moore P (1970) J Chem Soc A 1970:3178–3182

    Google Scholar 

  30. Damschen DE, Martin LR (1983) Atmos Environ 17:2005–2011

    Google Scholar 

  31. Mahoney LR (1970) J Am Chem Soc 92:5262

    Google Scholar 

  32. Martell AE, Smith RM (1977) Critical stability constants, Vol 3–Vol 4, Plenum Press, New York

    Google Scholar 

  33. Everett AJ, Minkoff GJ (1953) Trans Faraday Soc 49:410–414

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drexler, C., Elias, H., Fecher, B. et al. Kinetic investigation of sulfur(IV) oxidation by peroxo compounds R-OOH in aqueous solution. Fresenius J Anal Chem 340, 605–615 (1991). https://doi.org/10.1007/BF00321521

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00321521

Keywords

Navigation