Skip to main content
Log in

Contaminants in water: non-target UHPLC/MS analysis

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Contamination of water resources is one of the major problems to be faced for environment preservation and sustainability. The monitoring of target compounds based on mass spectrometry and selected reaction monitoring mode is often insufficient to definitely assess the quality of surface water. Also potentially harmful non-target pollutants simultaneously present must be taken into account. Liquid chromatography coupled with tandem mass spectrometry is suitable to obtain complete information on water composition. Hybrid mass spectrometers such as triple quadrupole/linear ion trap, hybrid quadrupole/time-of-flight and linear ion trap/orbitrap analyzers should be used. Here, we review ultra-high performance liquid chromatography coupled with mass spectrometry methods developed for post-target and non-target screening analysis of water emerging contaminants, such as pesticides and their degradation products, pharmaceuticals and drug side-reaction products, surfactants and illicit drugs. The major points are the following: (1) the possibility of performing retrospective analysis only by high-resolution mass analyzer; (2) the compatibility of mass analyzer with ultra-high performance liquid chromatography; (3) the use of deconvolution software to detect unknowns; and (4) the limited availability of library database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreozzi R, Raffaele M, Nicklas P (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50(10):1319–1330. doi:10.1016/S0045-6535(02)00769-5

    Article  CAS  Google Scholar 

  • Berset J-D, Brenneisen R, Mathieu C (2010) Analysis of licit and illicit drugs in waste, surface and lake water samples using large volume direct injection high performance liquid chromatography–electrospray tandem mass spectrometry (HPLC-MS/MS). Chemosphere 81(7):859–866. doi:10.1016/j.chemosphere.2010.08.011

    Article  CAS  Google Scholar 

  • Boreen AL, Arnold WA, McNeill K (2003) Photodegradation of pharmaceuticals in the aquatic environment: a review. Aquat Sci 65(4):320–341. doi:10.1016/j.chemosphere.2009.09.065

    Article  CAS  Google Scholar 

  • Bristow AWT (2006) Accurate mass measurement for the determination of elemental formula—a tutorial. Mass Spectrom Rev 25(1):99–111. doi:10.1002/mas.20058:99-111

    Article  CAS  Google Scholar 

  • Chiaia AC, Banta-Green C, Field J (2008) Eliminating solid phase extraction with large-volume injection LC/MS/MS analysis of illicit and legal drugs and human urine indicators in US wastewaters. Environ Sci Technol 42(23):8841–8848. doi:10.1021/es802309v

    Article  CAS  Google Scholar 

  • Chitescu CL, Oosterink E, de Jong J, Stolker AAML (2012) Accurate mass screening of pharmaceuticals and fungicides in water by U-HPLC–Exactive Orbitrap MS. Anal Bioanal Chem 403(10):2997–3011. doi:10.1007/s00216-012-5888-8

    Article  CAS  Google Scholar 

  • Cooper HJ, Marshall AG (2001) Electrospray ionization Fourier transform mass spectrometric analysis of wine. J Agric Food Chem 49(12):5710–5718. doi:10.1021/jf0108516

    Article  CAS  Google Scholar 

  • Cortés-Francisco N, Flores C, Moyano E, Caixach J (2011) Accurate mass measurements and ultrahigh-resolution: evaluation of different mass spectrometers for daily routine analysis of small molecules in negative electrospray ionization mode. Anal Bioanal Chem 400(10):3595–3606. doi:10.1007/s00216-011-5046-8

    Article  Google Scholar 

  • Cunliffe JM, Maloney TD (2007) Fused-core particle technology as an alternative to sub-2-µm particles to achieve high separation efficiency with low backpressure. J Sep Sci 30(18):3104–3109. doi:10.1002/jssc.200700260

    Article  CAS  Google Scholar 

  • Cuyckens F, Hurkmans R, Castro-Perez J, Leclercq L, Mortishire-Smith RJ (2009) Extracting metabolite ions out of a matrix background by combined mass defect, neutral loss and isotope filtration. Rapid Commun Mass Spectrom 23(2):327–332. doi:10.1002/rcm.3881

    Article  CAS  Google Scholar 

  • Del Mar G-RM, Pérez-Parada A, García-Reyes JF, Fernández-Alba AR, Agüera A (2011) Use of an accurate-mass database for the systematic identification of transformation products of organic contaminants in wastewater effluents. J Chromatogr A 1218(44):8002–8012. doi:10.1016/j.chroma.2011.09.003

    Article  Google Scholar 

  • Díaz R, Ibáñez M, Sancho JV, Hernández F (2011) Building an empirical mass spectra library for screening of organic pollutants by ultra-high-pressure liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25(2):355–369. doi:10.1002/rcm.4860

    Article  Google Scholar 

  • Díaz R, Ibáñez M, Sancho JV, Hernández F (2012) Target and non-target screening strategies for organic contaminants, residues and illicit substances in food, environmental and human biological samples by UHPLC-QTOF-MS. Anal Methods 4(1):196–209. doi:10.1039/c1ay05385j

    Article  Google Scholar 

  • Erve JCL, Gu M, Wang Y, De Maio W, Talaat RE (2009) Spectral accuracy of molecular ions in an ltq/orbitrap mass spectrometer and implications for elemental composition determination. J Am Soc Mass Spectrom 20(11):2058–2069. doi:10.1016/j.jasms.2009.07.014

    Article  CAS  Google Scholar 

  • Ferrer I, Thurman EM (2003) Liquid chromatography/time-of-flight/mass spectrometry (LC/TOF/MS) for the analysis of emerging contaminants. TrAC Trends Anal Chem 22(10):750–756. doi:10.1016/S0165-9936(03)01013-6

    Article  CAS  Google Scholar 

  • Ferrer I, Fernandez-Alba A, Zweigenbaum JA, Thurman EM (2006) Exact-mass library for pesticides using a molecular-feature database. Rapid Commun Mass Spectrom 20(24):3659–3668. doi:10.1002/rcm.2781

    Article  CAS  Google Scholar 

  • Gerssen A, Muldera PPJ, de Boerb J (2011) Screening of lipophilic marine toxins in shellfish and algae: development of a library using liquid chromatography coupled to orbitrap mass spectrometry. Anal Chim Acta 685(2):176–185. doi:10.1016/j.aca.2010.11.036

    Article  CAS  Google Scholar 

  • Godejohann M, Heintz L, Daolio C, Berset J-D, Muff D (2009) Comprehensive non-targeted analysis of contaminated groundwater of a former ammunition destruction site using 1H-NMR and HPLC-SPE-NMR/TOF-MS. Environ Sci Technol 43(18):7055–7061. doi:10.1021/es901068d

    Article  CAS  Google Scholar 

  • Gómez MJ, Gómez-Ramos MM, Malato O, Mezcua M, Férnandez-Alba AR (2010) Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography–quadrupole-time-of-flight mass spectrometry with an accurate-mass database. J Chromatogr A 1217(45):7038–7054. doi:10.1016/j.chroma.2010.08.070

    Article  Google Scholar 

  • González-Mariño I, Quintana JB, Rodríguez I, González-Díez CR (2012) Screening and selective quantification of illicit drugs in wastewater by mixed-mode solid-phase extraction and quadrupole-time-of-flight liquid chromatography–mass spectrometry. Anal Chem 84(3):1708–1717. doi:10.1021/ac202989e

    Article  Google Scholar 

  • Gosetti F, Bottaro M, Gianotti V, Mazzucco E, Frascarolo P, Zampieri D, Oliveri C, Viarengo A, Gennaro MC (2010a) Sun light degradation of 4-chloroaniline in waters and its effect on toxicity. A high performance liquid chromatography–Diode array–Tandem mass spectrometry study. Environ Pollut 158(2):592–598. doi:10.1016/j.envipol.2009.08.012

    Article  CAS  Google Scholar 

  • Gosetti F, Chiuminatto U, Zampieri D, Mazzucco E, Marengo E, Gennaro MC (2010b) A new on-line solid phase extraction high performance liquid chromatography tandem mass spectrometry method to study the sun light photodegradation of mono-chloroanilines in river water. J Chromatogr A 1217(20):3427–3434. doi:10.1016/j.chroma.2010.02.080

    Article  CAS  Google Scholar 

  • Gosetti F, Mazzucco E, Zampieri D, Gennaro MC (2010c) Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1217(25):3929–3937. doi:10.1016/j.chroma.2009.11.060

    Article  CAS  Google Scholar 

  • Gosetti F, Mazzucco E, Gennaro MC, Marengo E (2015) Non-target UHPLC/MS analysis of emerging contaminants in water. In: Lichtfouse E et al (eds) Pollutants in buildings, water and living organisms. Springer International Publishing, Switzerland

    Google Scholar 

  • Hager JW (2002) A new linear ion trap mass spectrometer. Rapid Commun Mass Spectrom 16(6):512–526. doi:10.1002/rcm.607

    Article  CAS  Google Scholar 

  • Hager JW, le Blanc JCY (2002) Product ion scanning using a Q-q-Q linear ion trap (Q TRAP) mass spectrometer. Rapid Commun Mass Spectrom 17(10):1056–1064. doi:10.1002/rcm.1020

    Article  Google Scholar 

  • Hager JW, le Blanc JCY (2003) High-performance liquid chromatography–tandem mass spectrometry with a new quadrupole/linear ion trap instrument. J Chromatogr A 1020(1):3–9. doi:10.1016/S0021-9673(03)00426-6

    Article  CAS  Google Scholar 

  • Ham BM (2008) Even electron mass spectrometry with biomolecule applications, 1st edn. Wiley Interscience, United States of America. ISBN: 978-0-470-11802-3

  • Hernández F, Pozo ÓJ, Sancho JV, López FJ, Marín JM, Ibáñez M (2005) Strategies for quantification and confirmation of multi-class polar pesticides and transformation products in water by LC-MS2 using triple quadrupole and hybrid quadrupole time-of-flight analyzers. TrAC Trends Anal Chem 24(7):596–612. doi:10.1016/j.trac.2005.04.007

    Article  Google Scholar 

  • Hernández F, Bijlsma L, Sancho JV, Díaz R, Ibáñez M (2011a) Rapid wide-scope screening of drugs of abuse, prescription drugs with potential for abuse and their metabolites in influent and effluent urban wastewater by ultra high pressure liquid chromatography–quadrupole-time-of-flight-mass spectrometry. Anal Chim Acta 684(1–2):96–106. doi:10.1016/j.aca.2010.10.043

    Article  Google Scholar 

  • Hernández F, Ibáñez M, Gracia-Lor E, Sancho JV (2011b) Retrospective LC-QTOF-MS analysis searching for pharmaceutical metabolites in urban wastewater. J Sep Sci 34:3517–3526. doi:10.1002/jssc.201100540

    Article  Google Scholar 

  • Hernández F, Sancho JV, Ibáñez M, Abad E, Portolés T, Mattioli L (2012) Current use of high-resolution mass spectrometry in the environmental sciences. Anal Bioanal Chem 403:1251–1264. doi:10.1007/s00216-012-5844-7

    Article  Google Scholar 

  • Herniman JM, Langley GJ, Bristow AWT, O’Connor G (2005) The validation of exact mass measurements for small molecules using FT-ICRMS for improved confidence in the selection of elemental formulas. J Am Soc Mass Spectrom 16(7):1100–1108. doi:10.1016/j.jasms.2005.02.027

    Article  CAS  Google Scholar 

  • Hill DW, Kertesz TM, Fontaine D, Friedman R, Grant DF (2008) Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra. Anal Chem 80(14):5574–5582. doi:10.1021/ac800548g

    Article  CAS  Google Scholar 

  • Hogenboom AC, van Leerdam JA, de Voogta P (2009) Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography–hybrid linear ion trap Orbitrap mass spectrometry. J Chromatogr A 1216(3):510–519. doi:10.1016/j.chroma.2008.08.053

    Article  CAS  Google Scholar 

  • Hu Q, Noll RJ, Hongyan L, Makarov A, Hardman M, Cooks RG (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40(4):430–443. doi:10.1002/jms.856

    Article  CAS  Google Scholar 

  • Hughey CA, Hendrickson CL, Rodgers RP, Marshall AG (2001) Elemental composition analysis of processed and unprocessed diesel fuel by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 15(5):1186–1193. doi:10.1021/ef010028b

    Article  CAS  Google Scholar 

  • Ibáñez M, Sancho JV, Pozo ÓJ, Hernández F, Niessen WMA (2005) Use of quadrupole time-of-flight mass spectrometry in the elucidation of unknown compounds present in environmental water. Rapid Commun Mass Spectrom 19(2):169–178. doi:10.1002/rcm.1764

    Article  Google Scholar 

  • Ibáñez M, Sancho JV, McMillan D, Rao R, Hernández F (2008) Rapid non-target screening of organic pollutants in water by ultra performance liquid chromatography coupled to time-of flight mass spectrometry. TrAC Trends Anal Chem 27(5):481–489. doi:10.1016/j.trac.2008.03.007

    Article  Google Scholar 

  • Ibáñez M, Guerrero C, Sancho JV, Hernández F (2009) Screening of antibiotics in surface and wastewater samples by ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. J Chromatogr A 1216(12):2529–2539. doi:10.1016/j.chroma.2009.01.073

    Article  Google Scholar 

  • Ibáñez M, Sancho JV, Pozo ÓJ, Hernández F (2011) Use of quadrupole time-of-flight mass spectrometry to determine proposed structures of transformation products of the herbicide bromacil after water chlorination. Rapid Commun Mass Spectrom 25:3103–3113. doi:10.1002/rcm.5183

    Article  Google Scholar 

  • Ibáñez M, Portolés T, Rúbies A, Muñoz E, Muñoz G, Pineda L, Serrahima E, Sancho JV, Centrich F, Hernández F (2012) The power of hyphenated chromatography/time-of-flight mass spectrometry in public health laboratories. J Agric Food Chem 60:5311–5323. doi:10.1021/jf300796d

    Article  Google Scholar 

  • Kaufmann A, Butcher P, Maden K, Walker S, Widmer M (2011) Semi-targeted residue screening in complex matrices with liquid chromatography coupled to high resolution mass spectrometry: current possibilities and limitations. Analyst 136(9):1898–1909. doi:10.1039/c0an00902d

    Article  CAS  Google Scholar 

  • Kellmann M, Muenster H, Zomer P, Mol H (2009) Full scan MS in comprehensive qualitative and quantitative residue analysis in food and feed matrices: how much resolving power is required? J Am Soc Mass Spectrom 20(8):1464–1476. doi:10.1016/j.jasms.2009.05.010

    Article  CAS  Google Scholar 

  • Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J (2009) Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environ Sci Technol 43(18):7039–7046. doi:10.1021/es901979h

    Article  CAS  Google Scholar 

  • Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinform. doi:10.1186/1471-2105-7-234234

    Google Scholar 

  • Kind T, Fiehn O (2007) Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinform. doi:10.1186/1471-2105-8-105

    Google Scholar 

  • Kosjek T, Heath E, Petrovic M, Barceló D (2007) Mass spectrometry for identifying pharmaceutical biotransformation products in the environment. TrAC Trends Anal Chem 26(11):1076–1085. doi:10.1016/j.trac.2007.10.005

    Article  CAS  Google Scholar 

  • Krauss M, Singer H, Hollender J (2010) LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem 397(3):943–951. doi:10.1007/s00216-010-3608-9

    Article  CAS  Google Scholar 

  • Li AC, Alton D, Bryant MS, Shou WZ (2005) Simultaneously quantifying parent drugs and screening for metabolites in plasma pharmacokinetic samples using selected reaction monitoring information-dependent acquisition on a QTrap instrument. Rapid Commun Mass Spectrom 19(14):1943–1950. doi:10.1002/rcm.2008

    Article  CAS  Google Scholar 

  • Li AC, Shou WZ, Mai TT, Jiang X (2007) Complete profiling and characterization of in vitro nefazodone metabolites using two different tandem mass spectrometric platforms. Rapid Commun Mass Spectrom 21(24):4001–4008. doi:10.1002/rcm.3303

    Article  CAS  Google Scholar 

  • Liao W, Draper WM, Perera SK (2008) Identification of unknowns in atmospheric pressure ionization mass spectrometry using a mass to structure search engine. Anal Chem 80(20):7765–7777. doi:10.1021/ac801166z

    Article  CAS  Google Scholar 

  • Lim H-K, Chen J, Sensenhauser C, Cook K, Subrahmanyam V (2007) Metabolite identification by data-dependent accurate mass spectrometric analysis at resolving power of 60,000 in external calibration mode using an LTQ/Orbitrap. Rapid Commun Mass Spectrom 21(12):1821–1832. doi:10.1002/rcm.3024

    Article  CAS  Google Scholar 

  • Makarov A, Denisov E, Kholomeev E, Balschun W, Lange O, Strupat K, Horning S (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 78(7):2113–2120. doi:10.1021/ac0518811

    Article  CAS  Google Scholar 

  • Mortishire-Smith RJ, O’Connor D, Castro-Perez J, Kirby J (2005) Accelerated throughput metabolic route screening in early drug discovery using high-resolution liquid chromatography/quadrupole time-of-flight mass spectrometry and automated data analysis. Rapid Commun Mass Spectrom 19(18):2659–2670. doi:10.1002/rcm.2111

    Article  CAS  Google Scholar 

  • Müller A, Schulz W, Ruck WKL, Weber WH (2011) A new approach to data evaluation in the non-target screening of organic trace substances in water analysis. Chemosphere 85(8):1211–1219. doi:10.1016/j.chemosphere.2011.07.009

    Article  Google Scholar 

  • Nurmi J, Pellinen J (2011) Multiresidue method for the analysis of emerging contaminants in wastewater by ultra performance liquid chromatography-time-of-flight mass spectrometry. J Chromatogr A 1218:6712–6719. doi:10.1016/j.chroma.2011.07.071

    Article  CAS  Google Scholar 

  • Nurmi J, Pellinen J, Rantalainen A-L (2012) Critical evaluation of screening techniques for emerging environmental contaminants based on accurate mass measurements with time-of-flight mass spectrometry. J Mass Spectrom 47(3):303–312. doi:10.1002/jms.2964

    Article  CAS  Google Scholar 

  • Ow SY, Noirel J, Salim M, Evans C, Watson R, Wright PC (2010) Balancing robust quantification and identification for iTRAQ: application of UHR-ToF MS. Proteomics 10(11):1–9. doi:10.1002/pmic.200900746

    Article  Google Scholar 

  • Pérez-Parada A, del Mar G-RM, Bueno MJM, Uclés S, Uclés A, Fernández-Alba AR (2012) Analytical improvements of hybrid LC-MS/MS techniques for the efficient evaluation of emerging contaminants in river waters: a case study of the Henares River (Madrid, Spain). Environ Sci Pollut Res 19(2):467–481. doi:10.1007/s11356-011-0585-2

    Article  Google Scholar 

  • Perry RH, Cooks RG, Noll RJ (2008) Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 27(6):661–699. doi:10.1002/mas.20186

    Article  CAS  Google Scholar 

  • Petrovic M, Barceló D (2006a) Liquid chromatography–mass spectrometry in the analysis of emerging environmental contaminants. Anal Bioanal Chem 385(3):422–424. doi:10.1007/s00216-006-0450-1

    Article  CAS  Google Scholar 

  • Petrovic M, Barceló D (2006b) Application of liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS) in the environmental analysis. J Mass Spectrom 41(10):1259–1267. doi:10.1002/jms.1103

    Article  CAS  Google Scholar 

  • Pitarc E, Portolés T, Marín JM, Ibáñez M, Albarrán F, Hernández F (2010) Analytical strategy based on the use of liquid chromatography and gas chromatography with triple-quadrupole and time-of-flight MS analyzers for investigating organic contaminants in wastewater. Anal Bioanal Chem 397:2763–2776. doi:10.1007/s00216-010-3692-x

    Article  Google Scholar 

  • Richardson S (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83:4614–4648. doi:10.1021/ac200915r

    Article  CAS  Google Scholar 

  • Rousu T, Herttuainen J, Tolonen A (2010) Comparison of triple quadrupole, hybrid linear ion trap triple quadrupole, time-of-flight and LTQ-Orbitrap mass spectrometers in drug discovery phase metabolite screening and identification in vitro—amitriptyline and verapamil as model compounds. Rapid Commun Mass Spectrom 24(1):939–957. doi:10.1002/rcm.4465

    Article  CAS  Google Scholar 

  • Sancho JV, Pozo ÓJ, Ibáñez M, Hernández F (2006) Potential of liquid chromatography/time-of-flight mass spectrometry for the determination of pesticides and transformation products in water. Anal Bioanal Chem 386(4):987–997. doi:10.1007/s00216-006-0532-0

    Article  CAS  Google Scholar 

  • Scripps Center for Metabolomics (2015) METLIN: Metabolite and Tandem MS Database, http://metlin.scripps.edu/. Accessed Aug 2015

  • Tiller PR, Yu S, Castro-Perez J, Fillgrove KL, Baillie TA (2008) High-throughput, accurate mass liquid chromatography/tandem mass spectrometry on a quadrupole time-of-flight system as a ‘first-line’ approach for metabolite identification studies. Rapid Commun Mass Spectrom 22(7):1053–1061. doi:10.1002/rcm.3472

    Article  CAS  Google Scholar 

  • Witt M, Fuchser J, Baykut G (2001) Fourier transform ion cyclotron resonance mass spectrometry with nano LC/micro electrospray ionization and matrix-assisted laser desorption/ionization: analytical performance in peptide mass fingerprint analysis. J Am Soc Mass Spectrom 1(6):553–561. doi:10.1016/S1044-0305(03)00138-7

    Google Scholar 

  • Wu J, Mc Allister H (2003) Exact mass measurement on an electrospray ionization time-of-flight mass spectrometer: error distribution and selective averaging. J Mass Spectrom 38(10):1043–1053. doi:10.1002/jms.516

    Article  CAS  Google Scholar 

  • Xia Y-Q, Miller JD, Bakhtiar R, Franklin RB, Liu DQ (2003) Use of a quadrupole linear ion trap mass spectrometer in metabolite identification and bioanalysis. Rapid Commun Mass Spectrom 17(11):1137–1145. doi:10.1002/rcm.1037

    Article  CAS  Google Scholar 

  • Yao M, Ma L, Duchoslav E, Zhu M (2009) Rapid screening and characterization of drug metabolites using multiple ion monitoring dependent product ion scan and post acquisition data mining on a hybrid triple quadrupole-linear ion trap mass spectrometer. Rapid Commun Mass Spectrom 23(11):1683–1693. doi:10.1002/rcm.4045

    Article  CAS  Google Scholar 

  • Zhu P, Ding W, Tong W, Ghosal W, Alton K, Chowdhury S (2009) A retention-time-shift-tolerant background subtraction and noise reduction algorithm (BgS-NoRA) for extraction of drug metabolites in liquid chromatography/mass spectrometry data from biological matrices. Rapid Commun Mass Spectrom 23(11):1563–1572. doi:10.1002/rcm.4041

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Gosetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosetti, F., Mazzucco, E., Gennaro, M.C. et al. Contaminants in water: non-target UHPLC/MS analysis. Environ Chem Lett 14, 51–65 (2016). https://doi.org/10.1007/s10311-015-0527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0527-1

Keywords

Navigation