Skip to main content
Log in

Potential of liquid chromatography/time-of-flight mass spectrometry for the determination of pesticides and transformation products in water

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Until now, time-of-flight (TOF) mass analysers have only been very rarely used in pesticide residue analysis (PRA) of water samples. However, the inherent characteristics of TOF MS make these analysers well-suited to this field, mainly for qualitative purposes. Thus, the high sensitivity obtained from full-scan acquisition in comparison to other MS analysers and the high resolution of TOF MS suggest its suitability for screening purposes; it also increases the multiresidue capabilities of methods based on it and decreases the chance of recording false positives. Although these characteristics can also be helpful for quantification, confirmation and elucidation, some limitations on the use of TOF for these purposes have been observed. These limitations are more noticeable when dealing with samples containing very low analyte concentrations, which is the normal situation for PRA in water. The use of hybrid quadrupole–time-of-flight instruments (QTOF) minimises the limitations of TOF, facilitating the simultaneous detection and unequivocal confirmation of pesticides found in the sample. Additionally, the acquisition of accurate product ion full-scan mass spectra can help to elucidate the structures of unknown compounds. In this paper, the potential of TOF and QTOF hyphenated to liquid chromatography for PRA in water is explored, emphasizing both the advantages and limitations of this approach for screening, quantification, confirmation and elucidation purposes. Emphasis is placed on the determination of polar pesticides and transformation products—the analytes that fit well with LC–API–(Q)TOF MS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a–d
Fig. 3a, b

Similar content being viewed by others

References

  1. Hogenboom AC, Niessen WMA, Brinkman UATh (2001) J Sep Sci 24:331–354

    Article  CAS  Google Scholar 

  2. Geerdink RB, Niessen WMA, Brinkman UATh (2002) J Chromatogr A 970:65–93

    Article  PubMed  CAS  Google Scholar 

  3. Reemtsma T (2003) J Chromatogr A 1000:477–501

    Article  PubMed  CAS  Google Scholar 

  4. Richardson SD (2004) Anal Chem 76:3337–3364

    Article  PubMed  CAS  Google Scholar 

  5. Hernández F, Pozo OJ, Sancho JV, López FJ, Marín JM, Ibáñez M (2005) Trends Anal Chem 24:596–612

    Article  CAS  Google Scholar 

  6. Zwiener C, Frimmel FH (2003) Anal Bioanal Chem 378:851–861

    Article  PubMed  CAS  Google Scholar 

  7. Zwiener C, Frimmel FH (2003) Anal Bioanal Chem 378:862–874

    Article  PubMed  CAS  Google Scholar 

  8. Ferrer I, Thurman EM (2003) Trends Anal Chem 22:750–756

    Article  CAS  Google Scholar 

  9. Vega AB, Frenich AG, Vidal JLM (2005) Anal Chim Acta 538:117–127

    Article  CAS  Google Scholar 

  10. Sancho JV, Pozo OJ, Hernandez F (2004) Analyst 129:38–44

    Article  PubMed  CAS  Google Scholar 

  11. Kampioti AA, Borba Da Cunha AC, De Alda ML, Barcelo D (2005) Anal Bioanal Chem 382:1815–1825

    Article  PubMed  CAS  Google Scholar 

  12. Hernández F, Sancho JV, Pozo OJ (2005) Anal Bioanal Chem 382:934–946

    Article  PubMed  CAS  Google Scholar 

  13. Ibáñez M, Sancho JV, Pozo OJ, Niessen WMA, Hernández F (2005) Rapid Commun Mass Spectrom 19:169–178

    Article  PubMed  CAS  Google Scholar 

  14. Hogenboom AC, Niessen WMA, Brinkman UATh (2000) Rapid Commun Mass Spectrom 14:1914–1924

    Article  PubMed  CAS  Google Scholar 

  15. Ferrer I, Thurman EM (2003) ACS Symp Ser 850:66–95

    Google Scholar 

  16. Kouloumbos VN, Tsipi DF, Hiskia AE, Nikolic D, van Breemen RB (2003) J Am Soc Mass Spectrom 14:803–817

    Article  PubMed  CAS  Google Scholar 

  17. Ibáñez M, Sancho JV, Pozo OJ, Hernández F (2004) Anal Chem 76:1328–1335

    Article  PubMed  CAS  Google Scholar 

  18. Detomaso A, Mascolo G, Lopez A (2005) Rapid Commun Mass Spectrom 19:2193–2201

    Article  PubMed  CAS  Google Scholar 

  19. Ibáñez M, Sancho JV, Pozo OJ, Hernández F (2006) Anal Bioanal Chem 384:448–457

    Article  PubMed  CAS  Google Scholar 

  20. Hogenboom AC, Niessen WMA, Little D, Brinkman UATh (1999) Rapid Commun Mass Spectrom 13:125–133

    Article  PubMed  CAS  Google Scholar 

  21. Ferrer I, Thurman EM (2003) ACS Symp Ser 850:109–127

    Article  Google Scholar 

  22. Maizels M, Budde WL (2004) Anal Chem 76:1342–1351

    Article  PubMed  CAS  Google Scholar 

  23. Holm A, Molander P, Lundanes E, Greibrokk T (2003) J Chromatogr A 983:43–50

    Article  PubMed  CAS  Google Scholar 

  24. Ferrer I, García-Reyes JF, Fernández-Alba A (2005) Trends Anal Chem 24:671–682

    Article  CAS  Google Scholar 

  25. Núñez O, Moyano E, Galcerán MT (2004) Anal Chim Acta 525:183–190

    Article  CAS  Google Scholar 

  26. EC (2002) European Commission Decision 2002/657/EC. Off J Eur Commun L221:8

  27. Hernández F, Ibáñez M, Sancho JV, Pozo OJ (2004) Anal Chem 76:4349–4357

    Article  PubMed  CAS  Google Scholar 

  28. Ferrer I, Thurman EM, Fernández-Alba AR (2005) Anal Chem 77:2818–2825

    Article  PubMed  CAS  Google Scholar 

  29. Ma WT, Steinbach K, Cai ZW (2004) Anal Bioanal Chem 378:1828–1835

    Article  PubMed  CAS  Google Scholar 

  30. Garcia-Reyes JF, Ferrer I, Thurman EM, Molina-Diaz A, Fernandez-Alba (2005) Rapid Commun Mass Spectrom 19:2780–2788

    Article  PubMed  CAS  Google Scholar 

  31. Stolker AAM, Niesing W, Hogendoorn EA, Versteegh JFM, Fuchs R, Brinkman UATh (2004) Anal Bioanal Chem 378:955–963

    Article  PubMed  CAS  Google Scholar 

  32. Bobeldijk I, Vissers JPC, Kearney G, Major H, van Leerdam JA (2001) J Chromatogr A 929:63–74

    Article  PubMed  CAS  Google Scholar 

  33. Stolker AAM, Niesing W, Fuchs R, Vreeken RJ, Niessen WMA, Brinkman UATh (2004) Anal Bioanal Chem 378:1754–1761

    Article  PubMed  CAS  Google Scholar 

  34. Marchese S, Gentili A, Perret D, D’Ascenzo G, Pastori F (2003) Rapid Commun Mass Spectrom 17:879–886

    Article  PubMed  CAS  Google Scholar 

  35. Marchese S, Gentili A, Perret D, Sergi M, Notari S (2004) Chromatographia 59:411–417

    Article  CAS  Google Scholar 

  36. Bobeldijk I, Stoks PGM, Vissers JPC, Emke E, van Leerdam JA, Muilwijk B, Berbee R, Noij THM (2002) J Chromatogr A 970:167–181

    Article  PubMed  CAS  Google Scholar 

  37. These A, Winkler M, Thomas C, Reemtsma T (2004) Rapid Commun Mass Spectrom 18:1777–1786

    Article  PubMed  CAS  Google Scholar 

  38. Pozo OJ, Guerrero C, Sancho JV, Ibáñez M, Pitarch E, Hogendoorn E, Hernández F (2006) J Chromatogr A 1103:83–93

    Article  PubMed  CAS  Google Scholar 

  39. Thurman EM, Ferrer I, Parry R (2002) J Chromatogr A 957:3–9

    Article  PubMed  CAS  Google Scholar 

  40. Knepper TP (2004) J Chromatogr A 1046:159–166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Ministerio de Educación y Ciencia (Project BQU 2003-02685) in their research on LC–TOFMS applications in the environmental and toxicological fields. M.I. is very grateful to Generalitat Valenciana for her predoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sancho, J.V., Pozo, Ó.J., Ibáñez, M. et al. Potential of liquid chromatography/time-of-flight mass spectrometry for the determination of pesticides and transformation products in water. Anal Bioanal Chem 386, 987–997 (2006). https://doi.org/10.1007/s00216-006-0532-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0532-0

Keywords

Navigation