Skip to main content
Log in

Composition and anti-inflammatory effect of the common myrtle (Myrtus communis L.) essential oil growing wild in Algeria

Composition et activité anti-inflammatoire du myrte commun (Myrtus communis L.) poussant spontanément en Algérie

  • Aromathérapie Expérimentale
  • Published:
Phytothérapie

Abstract

This study was designed to evaluate the chemical composition and anti-inflammatory activity of the common myrtle (Myrtus communis L.) essential oil. The composition of Myrtus communis L. essential oil, extracted by steam distillation, was characterized by a high fraction (80.9%) of oxygenated monoterpenes. The major components were myrtenyl acetate (38.7%), eucalyptol (12.7%), α-pinene (13.7%), and linalool (7.00%). The chemical profile of this essential oil allows us to classify it as myrtényle acétate/α-pinène chemotype, but with atypical proportions, related to the harvesting area. In the carrageenan-induced paw edema, five different groups were established and the essential oil was administered orally in three different doses. The common myrtle essential oil (100 mg/kg) was able to reduce the paw edema, with a comparable effect to that observed with diclofenac (positive control). This is the first report to demonstrate a significant anti-inflammatory activity of Algerian common myrtle essential oil.

Résumé

Cette étude a été conçue pour évaluer la composition chimique et l’activité anti-inflammatoire de l’huile essentielle de myrte commun (Myrtus communis L.). La composition de l’huile essentielle extraite par distillation à la vapeur a été caractérisée par une fraction élevée de monoterpènes oxygénés (80,9 %). Ses composants majeurs sont l’acétate de myrtényle (38,7 %), l’eucalyptol (12,7 %), l’α-pinène (13,7 %) et le linalool (7,00 %). Le profil chimique de cette huile essentielle lui permet d’être classée dans le chémotype d’acétate myrtényle/α-pinène, mais avec des proportions atypiques, relatives à la région de collecte. Dans le test d’induction de l’inflammation par la carragénine, trois doses différentes de l’huile essentielle ont été testées. L’huile essentielle de myrte commun (100 mg/kg) a été en mesure de réduire l’oedème de la patte postérieure avec un effet comparable à celui observé avec le Diclofénac® (contrôle positif). Ce rapport est le premier à démontrer une activité antiinflammatoire significative de l’huile essentielle du myrte commun algérien.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mahdi EJ (2013) Aspirin and its related non-steroidal antiinflammatory drugs. Libyan J Med 8:21569. doi: 10.3402/ljm. v8i0.21569

    Article  Google Scholar 

  2. Suntar I, Tumen I, Ustun O, et al (2012) Appraisal on the wound healing and anti-inflammatory activities of the essential oils obtained from the cones and needles of Pinus species by in vivo and in vitro experimental models. J Ethnopharmacol 139:533–40

    Article  CAS  PubMed  Google Scholar 

  3. Atzei AD (2003) La piante nella tradizione popolare della Sardegna. Sassari, Italy, Carlo Delfino Editore 319−23

    Google Scholar 

  4. Porter N (2001) Essential oils and their production. Crop Food Res 39:32–8

    Google Scholar 

  5. Bradesi J, Casanova J, Costa J, et al (1997) Chemical composition of myrtle leaf oil from Corsica. J Essent Oil Res 9:283–8

    Article  CAS  Google Scholar 

  6. Karamanoglu K (1972) Pharmaceutic botanic. Ankara Univ Ecz Fac Yay. In: Aydin C, Ozcan MM (2007) Determination of nutritional and physical properties of myrtle (Myrtus communis L.) fruits growing wild in Turkey. J Food Engg 79:453–8

    Google Scholar 

  7. Dogan A (1978) Myrtus communis L. In: Aydin C, Ozcan MM (2007) Determination of nutritional and physical properties of myrtle (Myrtus communis L.) fruits growing wild in Turkey. J Food Engg 79:453–8

    Google Scholar 

  8. Goetz P, Ghedira K (2012) Phytothérapie anti-infectieuse. Éditions Springer Science and Business, Paris, 318p

    Book  Google Scholar 

  9. Kashman Y, Rotstein A, Lifshitz A (1974) The structure determination of two new acylpholoroglucinols from Myrtus communis. Tetrahedron Lett 30:991–7

    Article  CAS  Google Scholar 

  10. Bezanger-Beauquesne L, Pinkas M, Torck M, et al (1980) Plantes médicinales des régions tempérées. Éditions Maloine, Paris, 413p

    Google Scholar 

  11. Touaibia M (2011) Contribution à l’étude de deux plantes médicinales: Myrtus communis L. et Myrtus nivellei Batt et Trab. obtenues in situ et in vitro. Thèse de magister en sciences biologiques, université Saad-Dahleb de Blida, 221p

    Google Scholar 

  12. Adams PP (2004) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing Corp., Carol Stream, IL in: Monforte MT, Tzakou O, Nostro A, Zimbalati V and Galati EM (2011) Chemical composition and biological activities of Calamintha officinalis essential oil. Journal of medicinal food. 14:297–303

    Google Scholar 

  13. Hilan C, Bouaoun D, Aoun J, et al (2009) Antimicrobial properties and toxicity by LD50 determination of an essential oil of Prangosa sperula Boissier. Phytotherapie 7:8–14

    Article  CAS  Google Scholar 

  14. Winter CA, Risley EA, Nuss GW (1962) Carrageenin induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 1:544–7

    Article  Google Scholar 

  15. Aydin C, Ozcan MM (2007) Determination of nutritional and physical properties of myrtle (Myrtus communis L.) fruits growing wild in Turkey. J Food Engg 79:453–8

    Article  CAS  Google Scholar 

  16. Jamoussi B, Romthane M, Abderraba A, et al (2005) Effect of harvest time on the yield and composition of Tunisian myrtle oils. Flavour Fragrance J 20:274–7

    Article  CAS  Google Scholar 

  17. Djilani A, Dicko A (2012) Nutrition, well being and health, chapter 7: the therapeutic benefits of essential oils. Edition Torsten Bohn, 224p

    Google Scholar 

  18. Ormancey X, Sisalli S, Coutiere P (2001) Formulation of essential oils in functional perfumery. Parfums, Cosmetiques, Actualites 157:30–40

    CAS  Google Scholar 

  19. Ahmadi L, Mirza M, Shahmir F (2002) The volatile constituents of Artemisia marschaliana Sprengel and its secretory elements. Flavour Fragrance J 17:141–3

    Article  CAS  Google Scholar 

  20. Bezić N, Šamanić I, Dunkić V, et al (2009) Essential oil composition and Internal Transcribed Spacer (ITS) sequence variability of four South-Croatian Satureja species (Lamiaceae). Molecules 14:925–38

    Article  PubMed  Google Scholar 

  21. Ciccarelli D, Garbari F, Pagni AM (2008) The flower of Myrtus communis (Myrtaceae): Secretory structures, unicellular papillae, and their ecological role. Flora 203:85–93

    Article  Google Scholar 

  22. Gershenzon J (1994) Metabolic costs of terpenoid accumulation in higher plants. J Chem Ecol 20:1281–328

    Article  CAS  PubMed  Google Scholar 

  23. Liolios CC, Graikou K, Skaltsa E, et al (2010) Dittany of Crete: a botanical and ethnopharmacological. J Ethnopharmacol 131: 229–41

    Article  PubMed  Google Scholar 

  24. Morone Fortunato I, Montemurro C, Ruta C, et al (2010) Essential oils, genetic relationships and in vitro establishment of Helichrysum italicum (Roth) ssp. italicum from wild Mediterranean germplasm. Industrial Crops Products 32:639–49

    Article  CAS  Google Scholar 

  25. Sangwan NS, Farooqi AHA, Shabih F, et al (2001) Regulation of essential oil production in plants. Plant Growth Regul 34: 3–21

    Article  CAS  Google Scholar 

  26. Bowles EJ (2003) The chemistry of aromatherapeutic oils, 3rd Edition. South Australia: Griffin Press, in: Aleksic V and Knezevic P (2014) Antimicrobial and antioxydant activity of extracts and essential oils of Myrtus communis L. Microbiological research 169:240–54

    Google Scholar 

  27. Aidi Wannes W, Mhamdi B, Sriti J, et al (2010) Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis L.) leaf, stem, and flower. Food Chem Toxicol 48:1362–70

    Article  CAS  PubMed  Google Scholar 

  28. Gupta V, Mittal P, Bansal P, et al (2010) Pharmacological potential of Matricaria recutita. Int J Pharmaceut Sci Drug Res 2:12–16

    Google Scholar 

  29. Martín A, Varona S, Navarrete A, et al (2010) Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils. Open Chem Engg J 4:31–41

    Article  Google Scholar 

  30. Gardeli C, Vassiliki P, Athanasios M, et al (2008) Essential oil of Pistacia lentiscus L. and Myrtus communis L.: evaluation of antioxydant capacity of methanolic extracts. Food Chem 107:1120–30

    Article  CAS  Google Scholar 

  31. Koukos PK, Papadopoulou KI, Papagiannopoulos AD, et al (2001) Chemicals from Greek forestry biomass: constituents of the leaf oil of Myrtus communis grown in Greece. J Essent Oil Res 13:245–6

    Article  CAS  Google Scholar 

  32. Yadergarinia D, Gachkar L, Rezaei MB, et al (2006) Biochemical activities of Iranian Menthapiperita L. and Myrtus communis L., essential oils. Phytochemistry 67:1249–55

    Article  Google Scholar 

  33. Özek T, Demirci B, Baser KHC (2000) Chemical composition of Turkish myrtle oil. J Essent Oil Res 12:541–4

    Article  Google Scholar 

  34. Messaoud CC, Hograni H, Boussaid M (2012) Chemical composition and antioxidant activities of essential oils and methanol extracts of three wild Lavandula L. species. J Nat Product Res 26:1976–84

    Article  CAS  Google Scholar 

  35. Andrade EHA, Alves CN, Guimarães EF, et al (2011) Variability in essential oil composition of Piper dilatatum L.C. Rich. Biochem Syst Ecol 39:669–75

    Article  CAS  Google Scholar 

  36. Deans SG, Svoboda KP, Gundidza M, et al (1992) Essential oil profiles of several temperate and tropical aromatic plants: their antimicrobial and antioxidant activities. ActaHortic 306:229–32

    Google Scholar 

  37. Sangwan V, Foulds I, Singh J, et al (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27:1–12

    Article  CAS  PubMed  Google Scholar 

  38. Chalchat JC, Garry RP, Michet A (1998) Essential oil of myrtle (Myrtus communis L.) of the Mediterranean littoral. J Essent Oil Res 10:613–17

    Article  CAS  Google Scholar 

  39. Flamini G, Luigi Cloni P, Morelli I, et al (2004) Phytochemical typologies in some populations of Myrtus communis L. on Caprione promontory (East Liguria, Italy). Food Chem 85:599–604

    Article  CAS  Google Scholar 

  40. Su YW, Chao SH, Lee MH, et al (2010) Inhibitory effects of citronellol and geraniol on nitric oxide and prostaglandin E2 production in macrophages. Plant Med 76:1666–71

    Article  CAS  Google Scholar 

  41. Muhaned K, Al Hindawi HIS, Al Deen MHA, et al (1989) Anti-inflammatory activity of some Iraqui plants using intact rats. J Ethnopharmacol l26:163–8

    Google Scholar 

  42. Tabti N (2011) Contribution à l’extraction et l’étude des huiles essentielles de Myrtus communis L. Mémoire de magistère, université de Blida-1, Algérie, 169p

    Google Scholar 

  43. Pérez GS, Zavala SM, Arias GL, et al (2011) Anti-inflammatory activity of some essential oils. J Essent Oil Res 23:38–44

    Article  Google Scholar 

  44. Sallé JL (1991) Les huiles essentielles: synthèse d’aromathérapie et introduction à la sympathiocothérapie. Éditions Frison-Roche, Paris, 167p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Touaibia.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touaibia, M. Composition and anti-inflammatory effect of the common myrtle (Myrtus communis L.) essential oil growing wild in Algeria. Phytothérapie (2017). https://doi.org/10.1007/s10298-017-1100-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10298-017-1100-9

Keywords

Mots clés

Navigation