Skip to main content
Log in

Free radical scavenging and cytotoxic activity of seed extracts of Podophyllum hexandrum

Piégeage des radicaux libres et activité cytotoxique des graines extraites du Podophyllum hexandrum

  • Pharmacognosie
  • Published:
Phytothérapie

Abstract

In the present study, in vitro antioxidant and cytotoxic activities of different extracts of Podophyllum hexandrum seed were investigated. Different polarities crude extracts were prepared through Soxhlet extractor and were used for the determination of antioxidant potential by 2,2′-diphenyl-1-picrylhydrazy (DPPH), reducing power, microsomal lipid peroxidation, and hydroxyl radical scavenging activity. Cytotoxic activity was carried out by the Sulphorhodamine B (SRB) method. The highest phenolic content of 465 ± 5.55 mgGallic Acid Equivalent(GAE) /g was observed in methanol extract followed by ethanol (359 ± 8.52) and aqueous extract (291 ±4.5 mgGAE/g). At a concentration of 700 μg/ml, DPPH radical scavenging activity was found to be highest in methanol extract (86 ±1.5%) followed by ethanol extract (78 ± 1.2), aqueous extract (71 ± 1.5), and ethyl acetate extract (64 ± 1.5%). At a concentration of 300 μg/ml, 76%, 65%, 65%, and 60% inhibition on microsomal lipid peroxidation was observed with methanol, ethanol, aqueous, and ethyl acetate extracts, respectively. Cytotoxicity of the extracts (100 μg/ml) was tested on three human cancer cell lines (MCF-7, HCT-116, and HeLa) using the SRB assay. These results clearly indicate that Podophyllum hexandrum seed extracts possess free radical savaging and cytotoxic activity and can be used against various oxidative stressrelated pathological conditions.

Résumé

Dans la présente étude, les activités cytotoxique et antioxydante in vitro de différents extraits de Podophyllum hexandrum graines ont été étudiées. Différentes polarités des extraits bruts ont été préparées grâce à l’extracteur Soxhlet et ont été utilisées pour la détermination du potentiel antioxydant par 2,2′-diphenyl-1-picrylhydrazy (DPPH), réduisant ainsi la puissance, la peroxydation des lipides microsomiques et activité piégeur de radicaux hydroxyles. L’activité cytotoxique a été réalisée par méthode de SRB. La plus haute teneur en composés phénoliques (PTC) de 465 ± 5,55 mgÉquivalent Acide Gallique (EAG)/g a été observée dans le méthanol extrait suivi par l’éthanol (359 ± 8,52) et extrait aqueux (291 ± 4,5 mgEAG/g). À la concentration de 700 μg/ml, DPPH antiradicalaires plus élevés de l’activité extrait au méthanol (86 ± 1,5 %), suivi par extraction à l’éthanol (78 ± 1,2), de l’extrait aqueux (71 ± 1,5) et extrait de l’acétate d’éthyle (64 ± 1,5 %). À la concentration de 300 μg/ml, 76, 65, 65 et 60 % d’inhibition de la peroxydation des lipides microsomiques ont été observées avec le méthanol, l’éthanol et l’acétate d’éthyle aqueux extraits respectivement. La cytotoxicité des extraits (100 μg/ml) a été testée sur trois lignées cellulaires cancéreuses humaines (MCF-7, HCT-116 et HeLa) à l’aide du sulphorhodamine B assay. Ces résultats indiquent clairement que les espèces Podophyllum hexandrum extraits de semence possèdent des radicaux libres éreintants et une activité cytotoxique et peuvent être employées contre diverses conditions pathologiques liées au stress oxydatif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. Maqsood S, Singh P, Samoon MH, et al (2010) Effect of dietary chitosan on non-specific immune response and growth of Cyprinus carpio challenged with Aeromonas hydrophila. Int Aqua Res 2:77–85

    Google Scholar 

  2. Zengin G, Cakmak YS, Guler GO, et al (2011) Antioxidant properties of methanolic extract and fatty acid composition of Centaurea urvillei DC. subsp. Hayekiana Wagenitz. Rec Nat Prod 5:123–32

    CAS  Google Scholar 

  3. Vongtau HO, Abbah J, Chindo BA, et al (2005) Central inhibitory effects of the methanol extract of Neorautanenia mitis root in rats and mice. J Pharm Biol 43:113–20

    Article  Google Scholar 

  4. Oluyemi KA, Okwuonu UC, Baxter DG, et al (2007) Toxic effects of methanolic extract of Aspilia africana leaf on the estrous cycle and uterine tissues of Wistar rats. Int J Morphol 25:609–14

    Article  Google Scholar 

  5. Harman D (1998) Free radical theory of aging. Current status. Elsevier, Amsterdam, pp 3–7

    Google Scholar 

  6. Aruoma OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75:199–212

    Article  CAS  Google Scholar 

  7. Witting LA (1965) Lipid peroxidation in vivo. J Am Oil Chem Soc 42:908

    Article  CAS  PubMed  Google Scholar 

  8. Hogg N (1998) Free radicals in disease. Semin Reprod Endocrinol 16:241–88

    Article  CAS  PubMed  Google Scholar 

  9. Pong K (2003) Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Exp Opin Biol Ther 3:127–39

    Article  CAS  Google Scholar 

  10. Gulcin I (2012) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–91

    Article  PubMed  Google Scholar 

  11. Gocer H, Gulcin I (2011) Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties. Int J Food Sci Nutr 62:821–25

    Article  CAS  PubMed  Google Scholar 

  12. Halliwell B (2000) The antioxidant paradox. The Lancet 355:1179–80

    Article  CAS  Google Scholar 

  13. Nunes PX, Silva SF, Guedes RJ, et al (2012) Biological oxidations and antioxidant activity of natural products, phytochemicals as nutraceuticals. In: Rao V (ed) Global approaches to their role in nutrition and health, 288 p

    Google Scholar 

  14. Tuba AK, Gulcin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37

    Article  Google Scholar 

  15. Osawa T, Kavakishi S, Namiki M, et al (1990) Antimutagenesis and anti-carcinogenesis mechanisms II. Plenum, New York, pp 139–53

    Book  Google Scholar 

  16. Ani V, Varadaraj MC, Akhilender K (2006) Antioxidant and antibacterial activities of polyphenolic compounds from bitter cumin (Cuminum nigrum L.). Eur Food Res Tech 224:109–15

    Article  CAS  Google Scholar 

  17. Chatterjee N, Agarwal S (1988) Liposomes as membrane model for study of lipid peroxidation. Free Radic Biol Med 4:51–72

    Article  CAS  PubMed  Google Scholar 

  18. Spencer JPE, Jenner A, Aruoma OI (1994) Intense oxidative DNA damage promoted by L-DOPA and its metabolites, implications for neurodegenerative disease. FEBS Lett 353:246–50

    Article  CAS  PubMed  Google Scholar 

  19. Urata Y, Yoshida S, Irie Y (2002) Treatment of asthma patients with herbal medicine TJ-96: a randomized controlled trial. Res Med 96:469–74

    Article  CAS  Google Scholar 

  20. Ilavarasan R, Mallika M, Venkataraman K (2005) Antiinflammation and antioxidant activities of Cassia fistula Linn bark extracts. Afr J Trad Compl Alter Med 2:70–85

    Google Scholar 

  21. Sun S, Yue P, Dawson MI, et al (1997) Differential effects of synthetic nuclear retinoid receptor-selective retinoids on the growth of human non-small cell lung carcinoma cells. Cancer Res 57:4931–39

    CAS  PubMed  Google Scholar 

  22. Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–59

    Article  Google Scholar 

  23. Arokiyaraj S, Martin S, Perinbam K, et al (2008) Free radical scavenging activity and HPTLC finger print of Pterocarpus santalinus L, an in vitro study. Indian J Sci Tech 7:1–3

    Google Scholar 

  24. Gordon MH (1990) The mechanism of the antioxidant action in vitro. In: Hudson BJE (ed) Food antioxidants, pp 1–18

    Chapter  Google Scholar 

  25. Ganie SH, Haq E, Masood A, et al (2011) Antioxidant and protective effect of ethyl ecetate extract of Podophyllum hexandrum rhizome on carbon tetrachloride induced rat liver injury. Evid Based Comp Alter Med 2011: 1–12

    Article  Google Scholar 

  26. Ganie SA, Amin S, Hamid R, et al (2012) Podophyllum hexandrum aqueous extract as a potential free radical scavenger. Redox Rep 17(2):54–62

    Article  CAS  PubMed  Google Scholar 

  27. Duh PD, Tu YY, Yen GC (1999) Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). Lebensmittel-Wissenschaft Technol 32:269–77

    Article  CAS  Google Scholar 

  28. Kumar S, Kumar D, Saroha K, et al (2008) Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. Methanolic fruit extract. Acta Pharm 58:215–20

    CAS  PubMed  Google Scholar 

  29. Mi-Yae Shon, Tae-Hun Kim, Nak-Ju Sung (2003) Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chem 82:593–7

    Article  CAS  Google Scholar 

  30. Becana M, Klucas RV (1992) Transition metals in legume root nodules; iron-dependent free radical production increases during nodule senescence. PNAS 89:8958–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robak J, Gryglewski J (1988) Flavonoids are scavengers of superoxide anion. Biochem Pharmacol 37:837–41

    Article  CAS  PubMed  Google Scholar 

  32. Sichel G, Corsaro C, Scalia M, et al (1991) In vitro scavenger activity of some flavonoids and melanins against O2. Free Radic Biol Med 11:1–8

    Article  CAS  PubMed  Google Scholar 

  33. Ganie SA, Dar TA, Hamid R, et al (2014) In vitro antioxidant and cytotoxic activities of Arnebia benthamii (Wall ex. G. Don): a critically endangered medicinal plant of Kashmir Valley. Oxid Med Cell Long 2014:1–8

    Google Scholar 

  34. Ferrer M, Lamar AS, Ferentes JL, et al (2002) Antimutagenic mechanisms of Phyllanthus orbicularis when H2O2 is tested using Salmonella assay. Mut Res 517:251–4

    Article  CAS  Google Scholar 

  35. Gil MI, Ferreres F, Tomas-Barberan FA (1999) Effect of post harvest storage and processing on the antioxidant constituents (flavonoids and vitamin C) of fresh-cut spinach. J Agric Food Chem 47:2213–17

    Article  CAS  PubMed  Google Scholar 

  36. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–42

    Article  CAS  PubMed  Google Scholar 

  37. Mehta RG, Murillo G, Naithani R, et al (2010) Cancer chemoprevention by natural products: how far have we come? Pharm Res 27:950–61

    Article  CAS  PubMed  Google Scholar 

  38. Soobrattee MA, Bahorun T, Aruoma OI (2006) Chemopreventive actions of polyphenolic compounds in cancer. Biofactors 27:19–35

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Showkat.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zargar, O., Hamid, R., Bashir Dar, K. et al. Free radical scavenging and cytotoxic activity of seed extracts of Podophyllum hexandrum . Phytothérapie (2016). https://doi.org/10.1007/s10298-016-1072-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10298-016-1072-1

Keywords

Mots clés

Navigation