Skip to main content
Log in

Purification and characterization of glutamate decarboxylase from Enterococcus raffinosus TCCC11660

  • Biocatalysis - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Glutamate decarboxylase (GAD) is the sole enzyme that synthesizes γ-aminobutyric acid through the irreversible decarboxylation of l-glutamate. In this study, the purification and characterization of an unreported GAD from a novel strain of Enterococcus raffinosus TCCC11660 were investigated. The native GAD from E. raffinosus TCCC11660 was purified 32.3-fold with a recovery rate of 8.3%, using ultrafiltration and ammonium sulfate precipitation, followed by ion-exchange and size-exclusion chromatography. The apparent molecular weight of purified GAD, as determined by SDS-PAGE and size-exclusion chromatography was 55 and 110 kDa, respectively, suggesting that GAD exists as a dimer of identical subunits in solution. In the best sodium citrate buffer, metal ions of Mo6+ and Mg2+ had positive effects, while Cu2+, Fe2+, Zn2+ and Co2+ showed significant adverse effects on enzyme activity. The optimum pH and temperature of GAD were determined to be 4.6 and 45 °C, while the K m and V max values for the sole l-glutamate substrate were 5.26 and 3.45 μmol L−1 min−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abe Y, Umemura S, Sugimotto K, Hirawa N, Kato Y, Yokoyama N, Yokoyama T, Iwai J, Ishii M (1995) Effect of green tea rich in γ-aminobutyric acid on blood pressure on Dahl salt-sensitive rats. Am J Hypertens 8:74–79. doi:10.1016/0895-7061(94)00141-W

    Article  CAS  PubMed  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–251. doi:10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  3. Capitani G, De Biase D, Aurizi C, Gut H, Bossa F, Gruetter MG (2003) Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J 22:4027–4037. doi:10.1093/emboj/cdg403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen HM, Gao Q, Su Z, Wang MX, Duan Q, Zhang YZ, Si XG (2012) Screening, identification and flask fermentation optimization of a high-yield γ-aminobutyric acid Enterococcus raffinosus strain. Microbiol China 39:1642–1652 (in Chinese)

    CAS  Google Scholar 

  5. Cho YR, Chang JY, Chang HC (2007) Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 17:104–109

    CAS  PubMed  Google Scholar 

  6. Cotter PD, Hill C (2003) Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453. doi:10.1128/MMBR.37.3.429-453.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cozzani I, Misuri A, Santoni C (1970) Purification and general properties of glutamate decarboxylase from Clostridium perfringens. Biochem J 118:135–141. doi:10.1042/bj1180135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding JZ, Yang TW, Feng H, Dong MY, Slavin M, Xiong SB (2016) Enhancing contents of gamma-aminobutyric acid (GABA) and other micronutrients in dehulled rice during germination under normoxic and hypoxic conditions. J Agric Food Chem 64:1094–1102. doi:10.1021/acs.jafc.5b04859

    Article  CAS  PubMed  Google Scholar 

  9. Fonda ML (1985) l-Glutamate decarboxylase from bacteria. Methods Enzymol 113:11–16

    Article  CAS  PubMed  Google Scholar 

  10. Gao Q, Duan Q, Wang DP, Zhang YZ, Zheng CY (2013) Separation and purification of γ-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies. J Agric Food Chem 61:1914–1919. doi:10.1021/jf304749v

    Article  CAS  PubMed  Google Scholar 

  11. Hao R, Schmit JC (1991) Purification and characterization of glutamate decarboxylase from Neurospora crassa conidia. J Biol Chem 266:5135–5139

    CAS  PubMed  Google Scholar 

  12. Jakobs C, Jaeken J, Gibson KM (1993) Inherited disorders of GABA metabolism. J Inherit Metab Dis 16:704–715. doi:10.2217/14796708.1.5.631

    Article  CAS  PubMed  Google Scholar 

  13. Karatzas KAG, Suur L, O’Byrne CP (2012) Characterization of the intracellular glutamate decarboxylase system: analysis of its function, transcription, and role in the acid resistance of various strains of Listeria monocytogenes. Appl Environ Microbiol 78:3571–3579. doi:10.1128/AEM.00227-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Komatsuzaki N, Nakamura T, Kimura T, Shima J (2008) Characterization of glutamate decarboxylase from a high γ-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Biosci Biotechnol Biochem 72:278–285. doi:10.1271/bbb.70163

    Article  CAS  PubMed  Google Scholar 

  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  16. Le Vo TD, Ko J, Park SJ, Lee SH, Hong SH (2013) Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli. J Ind Microbiol Biotechnol 40:927–933. doi:10.1007/s10295-013-1289-z

    Article  CAS  PubMed  Google Scholar 

  17. Lee JY, Jeon SJ (2014) Characterization and immobilization on nickel-chelated Sepharose of a glutamate decarboxylase A from Lactobacillus brevis BH2 and its application for production of GABA. Biosci Biotechnol Biochem 78:1656–1661. doi:10.1080/09168451.2014.936347

    Article  CAS  PubMed  Google Scholar 

  18. Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300:812–815. doi:10.1126/science.1082874

    Article  CAS  PubMed  Google Scholar 

  19. Lin J, Smith MP, Chapin KC, Baik HS (1996) Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 62:3094–3100

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu PL, Ma D, Chen YL, Guo YY, Chen GQ, Deng HT, Shi YG (2013) l-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res 23:635–644. doi:10.1038/cr.2013.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nomura M, Nakajima I, Fujita Y, Kobayashi M, Kimoto H, Suzukib I, Aso H (1999) Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiol 145:1375–1380. doi:10.1099/13500872-145-6-1375

    Article  CAS  Google Scholar 

  22. Park JY, Jeong SJ, Kim JH (2014) Characterization of a glutamate decarboxylase (GAD) gene from Lactobacillus zymae. Biotechnol Lett 36:1791–1799. doi:10.1007/s10529-014-1539-9

    Article  CAS  PubMed  Google Scholar 

  23. Park KB, Oh SH (2007) Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresour Technol 98:312–319. doi:10.1016/j.biortech.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  24. Sa HD, Park JY, Jeong SJ, Lee KW, Kim JH (2015) Characterization of glutamate decarboxylase (GAD) from Lactobacillus sakei A156 isolated from Jeot-gal. J Microbiol Biotechnol 25:696–703. doi:10.4014/jmb.1412.12075

    Article  CAS  PubMed  Google Scholar 

  25. Sandmeier E, Hale TI, Christen P (1994) Multiple evolutionary origin of pyridoxal-5′-phosphate-dependent amino acid decarboxylases. Eur J Biochem 221:997–1002. doi:10.1111/j.1432-1033.1994.tb18816.x

    Article  CAS  PubMed  Google Scholar 

  26. Seo MJ, Nam YD, Lee SY, Park SL, Yi SH, Lim SI (2013) Expression and characterization of a glutamate decarboxylase from Lactobacillus brevis 877G producing γ-aminobutyric acid. Biosci Biotechnol Biochem 77:853–856. doi:10.1271/bbb.120785

    Article  CAS  PubMed  Google Scholar 

  27. Shi XF, Chang CY, Ma SX, Cheng YB, Zhang J, Gao Q (2016) Efficient bioconversion of l-glutamate to γ-aminobutyric acid by Lactobacillus brevis resting cells. J Ind Microbiol Biotechnol. doi:10.1007/s10295-016-1777-z

    Google Scholar 

  28. Shin SM, Kim H, Joo Y, Lee SJ, Lee YJ, Lee SJ, Lee DW (2014) Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity. J Agric Food Chem 62:12186–12193. doi:10.1021/jf504656h

    Article  CAS  PubMed  Google Scholar 

  29. Trobacher CP, Zarei A, Liu J, Shawn MC, Gale GB, Barry JS (2013) Calmodulin-dependent and calmodulin-independent glutamate decarboxylases in apple fruit. BMC Plant Biol 13:144. doi:10.1186/1471-2229-13-144

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tsuchiya K, Nishimura K, Iwahara M (2003) Purification and characterization of glutamate decarboxylase from Aspergillus oryzae. Food Sci Technol Res 9:283–287. doi:10.3136/fstr.9.283

    Article  CAS  Google Scholar 

  31. Ueno H (2000) Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal B 10:67–79. doi:10.1016/S1381-1177(00)00114-4

    Article  CAS  Google Scholar 

  32. Ueno Y, Hayakawa K, Takahashi S, Oda K (1997) Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci Biotechnol Biochem 61:1168–1171. doi:10.1271/bbb.61.1168

    Article  CAS  PubMed  Google Scholar 

  33. Wang XY, Duan DL, Xu JC, Gao X, Fu XT (2015) Characterization of a novel alkaline arylsulfatase from Marinomonas sp. FW-1 and its application in the desulfation of red seaweed agar. J Ind Microbiol Biotechnol 42:1353–1362. doi:10.1007/s10295-015-1625-6

    Article  CAS  PubMed  Google Scholar 

  34. Wong CGT, Bottiglieri T, Snead OC (2003) Gaba, γ-hydroxybutyric acid, and neurological disease. Ann Neurol 6:S3–S12. doi:10.1002/ana.10696

    Article  Google Scholar 

  35. Wu JY, Matsuda T, Roberts E (1973) Purification and characterization of glutamate decarboxylase from mouse brain. J Biol Chem 248:3029–3034

    CAS  PubMed  Google Scholar 

  36. Yang H, Xing R, Hu L, Liu S, Li P (2016) Accumulation of γ-aminobutyric acid by Enterococcus avium 9184 in scallop solution in a two-stage fermentation strategy. Microb Biotechnol 9:478–485. doi:10.1111/1751-7915.12301

    Article  CAS  PubMed  Google Scholar 

  37. Yang SY, Lin Q, Lu ZX, Lu XF, Bie XM, Zou XK, Sun LJ (2008) Characterization of a novel glutamate decarboxylase from Streptococcus salivarius ssp. thermophilus Y2. J Chem Technol Biotechnol 83:855–861. doi:10.1002/jctb.1880

    Article  CAS  Google Scholar 

  38. Yang TW, Rao ZM, Kimani BG, Xu MJ, Zhang X, Yang ST (2015) Two-step production of gamma-aminobutyric acid from cassava powder using Corynebacterium glutamicum and Lactobacillus plantarum. J Ind Microbiol Biotechnol 42:1157–1165. doi:10.1007/s10295-015-1645-2

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Song L, Gao Q, Yu SM, Li L, Gao NF (2012) The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl Microbiol Biotechnol 94:1619–1627. doi:10.1007/s00253-012-3868-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program (973 Program) of China (2013CB734004), the Natural Science Foundation of China (31370075, 31471725 and 61603273), and the Youth Innovation Fund of Tianjin University of Science and Technology of China (2014CXLG28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Zhang, J., Ma, S. et al. Purification and characterization of glutamate decarboxylase from Enterococcus raffinosus TCCC11660. J Ind Microbiol Biotechnol 44, 817–824 (2017). https://doi.org/10.1007/s10295-017-1906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-1906-3

Keywords

Navigation