Skip to main content
Log in

Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The objectives of this study were to evaluate the potential of gabiroba Campomanesia pubescens (DC) O. Berg in the production of a beverage fermented using selected and wild yeasts from indigenous fermentation, analyze the volatile compounds profile present during the process of fermentation, and evaluate the sensory quality of the final beverage produced. Throughout the process of fermentation, when Saccharomyces cerevisiae UFLA CA 1162 was inoculated, there were stable viable populations around 9 log cells ml−1. During indigenous fermentation, yeast population increased from 3.7 log CFU ml−1 to 8.1 log CFU ml−1 after 14 days. The diversity and dynamics of the yeast population during indigenous fermentation observed by PFGE analysis showed five different karyotyping profiles in the first days of fermentation. After the seventh day, there was a higher frequency of a similar S. cerevisiae profile. The yeast non-Saccharomyces were identified by sequencing of the ITS region as Candida quercitrusa and Issatchenkia terricola. Inoculated fermentations yielded a higher amount of alcohol than indigenous ones, indicating the efficiency of selected strains. There was also a greater concentration of higher alcohols, which are usually responsible for the flavor found in alcoholic beverages. Based on the characteristics of the pulp and acceptance in the sensory analysis, gabiroba fruits showed good potential for use in the production of fermented beverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akubor PI, Obio SO, Nwadomere KA, Obiomah E (2003) Production and quality evaluation of banana wine. Plant Foods Hum Nutr 58:1–6

    PubMed  CAS  Google Scholar 

  2. Alves RE, Filgueiras HCA, Moura CFH (2000) In: Alves RE, Filgueiras HAC, Moura CFH (eds) Caracterização de frutas nativas da América Latina, vol 9 (Série Frutas Nativas). Jaboticabal, SP, Brazil, pp 15–18

  3. Andrade JS, Pantoja L, Maeda RN (2003) Melhoria do rendimento e do processo de obtenção da bebida alcoólica de pupunha (Bactris gasipaes Kunth). Cienc Tecnol Alimentos 23:34–38

    CAS  Google Scholar 

  4. Association of Official Analytical Chemistry (1992) Official methods of analysis of the association of official analytical chemistry, 15th edn. AOAC, Washington

    Google Scholar 

  5. Bernardi TL, Pereira GVM, Cardoso PG, Dias ES, Schwan RF (2008) Saccharomyces cerevisiae strains associated with the production of cachaca: identification and characterization by traditional and molecular methods (PCR, PFGE and mtDNA-RFLP). World J Microbiol Biotechnol 43:2705–2712. doi:10.1007/s11274-008-9799-y

    Article  Google Scholar 

  6. Briones AI, Ubeda J, Grando MS (1996) Differentiation of Saccharomyces cerevisiae strains isolated from fermenting musts according to their karyotype patterns. Int J Food Microbiol 28:369–377. doi:10.1016/0168-1605(95)00008-9

    Article  PubMed  CAS  Google Scholar 

  7. Buescher RW, Furmanski RJ (1978) Role of pectinesterase and polygalacturonase in the formation of woolliness in peaches. J Food Sci 43:264–266. doi:10.1111/j.1365-2621.1978.tb09788.x

    Article  CAS  Google Scholar 

  8. Catarino S, Madeira M, Monteiro F, Rocha F, Curvelo-Garcia AS, De Sousa RC (2008) Effect of bentonite characteristics on the elemental composition of wine. J Agric Food Chem 58:158–165. doi:10.1021/jf0720180

    Article  Google Scholar 

  9. Chanchaichaovivat A, Ruenwongsa P, Panijpan B (2007) Screening and identification of yeast strains from fruits and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biol Control 42:326–335. doi:10.1016/j.biocontrol.2007.05.016

    Article  Google Scholar 

  10. Ciani M, Beco L, Comitini F (2006) Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. Int J Food Microbiol 108:239–245. doi:10.1016/j.ijfoodmicro.2005.11.012

    Article  PubMed  CAS  Google Scholar 

  11. Clemente-Jimenez JM, Mingorance-Cazorla L, Martinez-Rodríguez S, Heras-Vázquez FJL, Rodríguez-Vico F (2005) Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol 21:149–155. doi:10.1016/S0740-0020(03)00063-7

    Article  Google Scholar 

  12. Dias DR, Schwan RF, Freire ES, Serôdio RS (2007) Elaboration of a fruit wine from cocoa (Theobroma cacao L.). Int J Food Sci Technol 42:319–329. doi:10.1111/j.1365-2621.2006.01226.x

    Article  CAS  Google Scholar 

  13. Dias DR, Schwan RF, Lima LCO (2003) Metodologia para elaboração de fermentado de cajá (Spondias mombin L.). Cienc Tecnol Alimentos 23:342–350

    Google Scholar 

  14. Domizio P, Lencioni L, Ciani M, Blasi SDI, Pontremolesi C, Sabatelli MP (2007) Spontaneous and inoculated populations dynamics and their effects on organoleptic characters of Vinsanto wine under different process conditions. Int J Food Microbiol 115:281–289. doi:10.1016/j.ijfoodmicro.2006.10.052

    Article  PubMed  CAS  Google Scholar 

  15. Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, Botstein D (2002) Characteristic genome rearrangements in experimental evolutions of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:16144–16149. doi:10.1073/pnas.242624799

    Article  PubMed  CAS  Google Scholar 

  16. Egli CM, Edinger WD, Mitrakul CM, Henick-Kling T (1998) Dynamics of indigenous and inoculated yeast populations and their effects on the sensory character of Riesling and Chardonnay wine. J Appl Microbiol 85:779–789. doi:10.1046/j.1365-2672.1998.00521.x

    Article  PubMed  CAS  Google Scholar 

  17. Ferreira ACS, Barbe JC, Bertrand A (2002) Heterocyclic acetals from glycerol and acetaldehyde in port wines: evolution with aging. J Agric Food Chem 50:2560–2564. doi:10.1021/jf011391j

    Article  Google Scholar 

  18. Fischer G, James SA, Roberts IN, Oliver SG, Louis ET (2000) Chromosomal evolution in Saccharomyces. Nature 405:451–453. doi:10.1038/35013058

    Article  PubMed  CAS  Google Scholar 

  19. Fleet GH (1999) micro organisms in food ecosystems. Int J Food Microbiol 50:101–117. doi:10.1016/S0168-1605(99)00080-X

    Article  PubMed  CAS  Google Scholar 

  20. Fleet GH (2003) Yeast interactions and wine flavor. Int J Food Microbiol 86:11–22. doi:10.1016/S0168-1605(03)00245-9

    Article  PubMed  CAS  Google Scholar 

  21. Garde-Cerdán T, Ancín-Azpilicueta C (2006) Contribution of wild yeasts to the formation of volatile compounds in inoculated wine fermentations. Eur Food Res Technol 222:15–25. doi:10.1007/s00217-005-0029-7

    Article  Google Scholar 

  22. Gerbaux V, Meurgues O (1995) Influence du sulfitage et du débourbage des moûs sur l’élaboration et la qualité des vins de chardonnay. Rev Enol 78:15–18

    Google Scholar 

  23. Jemec KP, Cadez N, Zagorc T, Bubic V, Zupec A, Raspor P (2001) Yeast population dynamics in five spontaneous fermentations of Malvasia must. Food Microbiol 18:247–259. doi:10.1006/fmic.2001.0396

    Article  Google Scholar 

  24. Jeyaram K, Singh WM, Capece A, Romano P (2008) Molecular identification of yeast species associated with ‘Hamei’—a traditional starter used for rice wine production in Manipur, India. Int J Food Microbiol 124:115–125. doi:10.1016/j.ijfoodmicro.2008.02.029

    Article  PubMed  CAS  Google Scholar 

  25. Kuthan M, Devaux F, Janderová B, Slaninova I, Jacq C, Palková Z (2003) Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol 47:745–754. doi:10.1046/j.1365-2958.2003.03332.x

    Article  PubMed  CAS  Google Scholar 

  26. Landrum LR (1986) Campomanesia, pimenta, Blepharocalyx, Legrandia, Acca, Myrrhinium, and Luma (Myrtaceae). Flora Neotropica Monogr 45:1–179

    Google Scholar 

  27. Matsuno H, Uritani I (1972) Physiological behaviour of peroxidase isoenzymes in sweet potato root issue injured by cutting black root. Plant Cell Physiol 13:1091–1101

    CAS  Google Scholar 

  28. Mccready RM, Mccomb EA (1952) Extraction and determination total pectin material in fruits. Anal Chem 12:1586–1588

    Google Scholar 

  29. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 31:426–428

    CAS  Google Scholar 

  30. Molnár O, Wuczkowski M, Prillinger H (2008) Yeast biodiversity in the guts of several pests on maize; comparison on three methods: classical isolation, cloning and DGGE. Mycol Prog 7:11–123. doi:10.1007/s11557-008-0558-0

    Article  Google Scholar 

  31. Naumova ES, Ivannikova Yu V, Naumov GI (2004) Genetic differentiation of the sherry yeasts Saccharomyces cerevisiae. Appl Biochem Microbiol 41:578–582. doi:10.1007/s10438-005-0105-6

    Article  Google Scholar 

  32. Nurgel C, Erten H, Canbas A, Cabaroglu T, Selli S (2002) Influence of Saccharomyces cerevisiae strain on fermentation and flavor compounds of white wines made cv. Emir grown in Central Anatolia, Turkey. J Ind Microbiol Biotechnol 29:28–33. doi:10.1038/sj.jim.7000258

    Article  PubMed  CAS  Google Scholar 

  33. Reddy LVA, Reddy OVS (2005) Production and characterization of wine from mango fruit (Mangifera indica L.). World J Microbiol Biotechnol 21:1345–1350. doi:10.1007/s11274-005-4416-9

    Article  CAS  Google Scholar 

  34. Romano P, Brandolini V, Ansaloni C, Menziani E (1998) The production of 2, 3-butanediol as a differentiating character in wine yeasts. World J Microbiol Biotechnol 14:649–653. doi:10.1023/A:1008804801778

    Article  CAS  Google Scholar 

  35. Romano P, Suzzi G (1996) Origin and production of acetoin during wine yeast fermentation. Appl Environ Microbiol 62:309–315

    PubMed  CAS  Google Scholar 

  36. Schwan RF, Mendonça AT, Silva JJ Jr, Rodrigues V, Wheals AE (2001) Microbiology and physiology of cachaça (aguardente) fermentations. Antonie Van Leeuwenhoek 79:89–96. doi:10.1023/A:1010225117654

    Article  PubMed  CAS  Google Scholar 

  37. Santos CS, Almeida SS, Toledo AL, Santana JCC, de Souza RR (2005) Elaboração e análise sensorial do fermentado de acerola (Malpighia punicifolia L.). Braz J Food Technol 10:47–50

    Google Scholar 

  38. Schmid J, Voss E, Soll DR (1990) Computer-assisted methods for assessing strain relatedness in Candida albicans by fingerprinting with the moderately repetitive sequence Ca3. J Clin Microbiol 28:1236–1243

    PubMed  CAS  Google Scholar 

  39. TACO Tabela Brasileira de Composição de Alimentos (2006) http://www.unicamp.br/nepa/taco. Accessed 5 March 2008

  40. Valles BS, Bedriñana RP, Tascón NF, Garcia AG, Madrera RR (2005) Analytical differentiation of cider inoculated with yeast (Saccharomyces cerevisiae) isolated from Asturian (Spain) apple juice. LWT 38:455–461. doi:10.1016/j.lwt.2004.07.008

    Article  Google Scholar 

  41. Vallilo MI, Lamardo LCA, Garbelotti ML, Oliveira E, Moreno PRH (2006) Composição química dos frutos de Campomanesia adamantium (Cambessédes) O. Berg. Cienc Tecnol Alimentos 26:805–810

    CAS  Google Scholar 

  42. Wisseman KW, Lee CY (1980) Polyphenoloxidase activity during grape maturation and wine production. Am J Enol Vitic 31:206–211

    Google Scholar 

  43. Yemm WE, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico do Brasil (CNPq) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for financial support and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane Freitas Schwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, W.F., Dias, D.R., de Melo Pereira, G.V. et al. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production. J Ind Microbiol Biotechnol 36, 557–569 (2009). https://doi.org/10.1007/s10295-009-0526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0526-y

Keywords

Navigation