Skip to main content

Advertisement

Log in

Influence of porcine-derived collagen matrix on endothelial progenitor cells: an in vitro study

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Porcine-derived collagen matrix (PDCM) has been reported as a promising alternative to autogenous soft tissue grafts in periodontal plastic surgery. The aim of this study was to analyze the influence of a novel PDCM on endothelial progenitor cells (EPC) in vitro. EPC were isolated from human peripheral blood, cultured and transferred on the PDCM (mucoderm®). Tissue culture polystyrene surface (TCPS) served as control. Cell viability of EPC on PDCM was measured by a MTT and PrestoBlue® assay. Migration ability was tested using a Boyden migration assay. A ToxiLight® assay was performed to analyze the influence of PDCM on adenylate kinase (ADK) release and apoptosis rate of EPC. Using the MTT assay, EPC cultured on PDCM demonstrated a significantly increased cell viability compared to the control group at days 3, 6 and 12 (p each <0.001). According to the PrestoBlue® assay, EPC showed a significant increase of cell viability compared to the control group at 48, 72, and 96 h (p each <0.001). In the Boyden migration assay, a significantly increased EPC migration ability could be observed after 3–12 days (p each ≤0.001). No significantly increased apoptosis rate of EPC on PDCM could be observed with exception after 96 h (p each >0.05). Overall, our results suggest a good biocompatibility of PDCM without any cytotoxic effects on EPC, which might support a rapid revascularization and therefore a sufficient ingrowth of the PDCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zucchelli G, Amore C, Sforza NM, Montebugnoli L, de Sanctis M. Bilaminar techniques for the treatment of recession-type defects. A comparative clinical study. J Clin Periodontol. 2003;30:862–70.

    Article  PubMed  Google Scholar 

  2. Cairo F, Pagliaro U, Nieri M. Treatment of gingival recession with coronally advanced flap procedures: a systematic review. J Clin Periodontol. 2008;35:136–62.

    Article  PubMed  Google Scholar 

  3. Chambrone L, Sukekava F, Araujo MG, Pustiglioni FE, Chambrone LA, Lima LA. J Periodontol. 2010;81:452–78.

    Article  PubMed  Google Scholar 

  4. Gapski R, Parks CA, Wang HL. Acellular dermal matrix for mucogingival surgery: a meta-analysis. J Periodontol. 2005;76:1814–22.

    Article  PubMed  Google Scholar 

  5. Jepsen K, Jepsen S, Zucchelli G, Stefanini M, de Sanctis M, Baldini N, Greven B, Heinz B, Wennström J, Cassel B, Vignoletti F, Sanz M. Treatment of gingival recession defects with a coronally advanced flap and a xenogeneic collagen matrix: a multicenter randomized clinical trial. J Clin Periodontol. 2012;40:82–9.

    Article  PubMed  Google Scholar 

  6. Schlee M, Ghanaati S, Willershausen I, Stimmlmayr M, Sculean A, Sader RA. Bovine pericardium based non-cross linked collagen matrix for successful root coverage, a clinical study in human. Head Face Med. 2012;8:6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pabst AM, Happe A, Callaway A, Ziebart T, Stratul SI, Ackermann M, Konerding MA, Willershausen B, Kasaj A. In vitro and in vivo characterization of porcine acellular dermal matrix for gingival augmentation procedures. J Periodontal Res. 2014;49:371–81.

    Article  PubMed  Google Scholar 

  8. Fickl S, Nannmark U, Schlagenhauf U, Hürzeler MB, Kebschull M. Porcine dermal matrix in the treatment of dehiscence-type defects: an experimental split-mouth animal trial. Clin Oral Impl Res. 2014 [Epub ahead of print].

  9. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 2000;5:40–6.

    Article  PubMed  Google Scholar 

  10. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  PubMed  Google Scholar 

  11. Ziebart T, Pabst A, Klein MO, Kaemmerer P, Gauss L, Bruellmann D, et al. Bisphosphonates: restrictions for vasculogenesis and angiogenesis: inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro. Clin Oral Investig. 2011;15:105–11.

    Article  PubMed  Google Scholar 

  12. Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich P, Brem H. The role of vascular endothelial growth factor in wound healing. J Surg Res. 2009;153:347–58.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.

    PubMed  Google Scholar 

  14. Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A. Role of platelet-derived growth factor in wound healing. J Cell Biochem. 1991;45:319–26.

    Article  PubMed  Google Scholar 

  15. Urbich C, Heeschen C, Aicher A, Sasaki K, Bruhl T, Farhadi MR, Vajkoczy P, Hofmann WK, Peters C, Pennacchio LA, Abolmaali ND, Chavakis E, Reinheckel T, Zeiher AM, Dimmeler S. Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat Med. 2005;11:206–13.

    Article  PubMed  Google Scholar 

  16. Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med. 2003;9:702–12.

    Article  PubMed  Google Scholar 

  17. Yoon CH, Hur J, Oh IY, Park KW, Kim TY, Shin JH, Kim JH, Lee CS, Chung JK, Park YB, Kim HS. Intercellular adhesion molecule-1 is upregulated in ischemic muscle, which mediates trafficking of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2006;26:1066–72.

    Article  PubMed  Google Scholar 

  18. Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, Bunting S, Steinmetz HG, Gurtner GC. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol. 2004;164:1935–47.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sivan-Loukianova E, Awad OA, Stepanovic V, Bickenbach J, Schatteman GC. CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. J Vasc Res. 2003;40:368–77.

    Article  PubMed  Google Scholar 

  20. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85:221–8.

    Article  PubMed  Google Scholar 

  21. Kirsner RS, Eaglstein WH. The wound healing process. Dermatol Clin. 1993;11:629–40.

    PubMed  Google Scholar 

  22. Hess CT, Kirsner RS. Orchestrating wound healing: assessing and preparing the wound bed. Adv Skin Wound Care. 2003;16:246–57.

    Article  PubMed  Google Scholar 

  23. Li J, Zhang YP, Kirsner RS. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech. 2003;60:107–14.

    Article  PubMed  Google Scholar 

  24. Ghanaati S, Schlee M, Webber MJ, Willershausen I, Barbeck M, Balic E, Görlach C, Stupp SI, Sader RA, Kirkpatrick CJ. Evaluation of the tissue reaction to a new bilayered collagen matrix in vivo and its translation to the clinic. Biomed Mater. 2011;6:015010.

    Article  PubMed  Google Scholar 

  25. Wong AK, Schonmeyr B, Singh P, Carlson DL, Li S, Mehrara BJ. Histologic analysis of angiogenesis and lymphangiogenesis in acellular human dermis. Plast Reconstr Surg. 2008;121:1144–52.

    Article  PubMed  Google Scholar 

  26. Eppley B. Experimental assessment of the revascularization of acellular human dermis for soft-tissue augmentation. Plast Reconstr Surg. 2001;107:757–62.

    Article  PubMed  Google Scholar 

  27. Guiha R, el Khodeiry S, Mota L, Caffesse R. Histological evaluation of healing and revascularization of the subepithelial connective tissue graft. J Periodontol. 2001;72:470–8.

    Article  PubMed  Google Scholar 

  28. Hoyama E, Schellini SA, Marques ME, Rossa R, Padovani CR. A comparison of human and porcine acellular dermal tissues in the subcutaneous space of a rat model. Orbit. 2005;24:249–55.

    Article  PubMed  Google Scholar 

  29. Richter GT, Smith JE, Spencer HJ, Fan CY, Vural E. Histological comparison of implanted cadaveric and porcine dermal matrix grafts. Otolaryngol Head Neck Surg. 2007;137:239–42.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Kasaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pabst, A.M., Lehmann, KM., Walter, C. et al. Influence of porcine-derived collagen matrix on endothelial progenitor cells: an in vitro study. Odontology 104, 19–26 (2016). https://doi.org/10.1007/s10266-014-0186-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-014-0186-x

Keywords

Navigation