Skip to main content
Log in

Carbohydrate metabolism in germinating caryopses of Oryza sativa L. exposed to prolonged anoxia

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Anoxia tolerance can be evaluated not only in terms of growth or survival of plant organs during oxygen deprivation, but also in relation to carbohydrate utilization in the context of a well-modulated fermentative metabolism. Rice (Oryza spp.) is unique among cereals, in that it has the distinctive ability to germinate under complete anaerobiosis by using the starchy reserves in its seeds to fuel the anaerobic metabolism. The aim of the present study was to evaluate the ability of germinating rice seedlings to survive a long-term oxygen deficiency [40 days after sowing (DAS)] and the effects on sugar metabolism, focusing on starch degradation as well as soluble sugars transport and storage under anoxia. No significant decline in vitality occurred until 30 DAS though no recovery was detected following longer anoxic treatments. Growth arrest was observed following anoxic treatments longer that 20 DAS, in concomitance with considerably lower ethanol production. Amylolytic activity in embryos and endosperms had similar responses to anoxia, reaching maximum content 30 days after the onset of stress, following which the levels declined for the remainder of the experiment. Under anoxia, average amylolytic activity was twofold higher in embryos than endosperms. Efficient starch degradation was observed in rice under anoxia at the onset of the treatment but it decreased over time and did not lead to a complete depletion. Our analysis of α-amylase activity did not support the hypothesis that starch degradation plays a critical role in explaining differences in vitality and coleoptile growth under prolonged oxygen deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alpi A, Beevers H (1983) Effects of O2 concentration on rice seedlings. Plant Physiol 71:30–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Banti V, Giuntoli B, Gonzali S, Loreti E, Magneschi L, Novi G, Paparelli E, Parlanti S, Pucciariello C, Santaniello A, Perata P (2013) Low oxygen response mechanisms in green organisms. Int J Mol Sci 14:4734–4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Mendiburu F (2014) agricolae: statistical procedures for agricultural research. R package version 1.2–1, p 60

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs J, Greenway H (2003) Review: mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  Google Scholar 

  • Gibbs J, Morrell S, Valdez A, Setter TL, Greenway H (2000) Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. J Exp Bot 51:785–796

    Article  CAS  PubMed  Google Scholar 

  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999–1036

    Article  CAS  Google Scholar 

  • Guglielminetti L, Perata P, Alpi A (1995a) Effect of anoxia on carbohydrate-metabolism in rice seedlings. Plant Physiol 108:735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guglielminetti L, Yamaguchi J, Perata P, Alpi A (1995b) Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol 109:1069–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guglielminetti L, Loreti E, Perata P, Alpi A (1999) Sucrose synthesis in cereal grains under oxygen deprivation. J Plant Res 112:353–359

    Article  CAS  Google Scholar 

  • Guglielminetti L, Busilacchi HA, Alpi A (2000) Effect of anoxia on α-amylase induction in maize caryopsis. J Plant Res 113:185–192

    Article  CAS  Google Scholar 

  • Guglielminetti L, Busilacchi HA, Perata P, Alpi A (2001) Carbohydrate–ethanol transition in cereal grains under anoxia. New Phytol 151:607–612

    Article  CAS  Google Scholar 

  • Guglielminetti L, Morita A, Yamaguchi J, Loreti E, Perata P, Alpi A (2006) Differential expression of two fructokinases in Oryza sativa seedlings grown under aerobic and anaerobic conditions. J Plant Res 119:351–356

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Greenway H, Colmer TD (2003) Anoxia tolerance in rice seedlings: exogenous glucose improves growth of an anoxia-‘intolerant’, but not of a ‘tolerant’ genotype. J Exp Bot 54:2363–2373

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB, Ram PC (2003) Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot (Lond) 91:227–241

    Article  CAS  Google Scholar 

  • Kato-Noguchi H, Morokuma M (2007) Ethanolic fermentation and anoxia tolerance in four rice cultivars. J Plant Physiol 164:168–173

    Article  CAS  PubMed  Google Scholar 

  • Kato-Noguchi H, Sasaki R, Yasuda Y (2008) Anoxia tolerance and α-amylase activity in four rice cultivars. Plant Growth Regul 55:35–41

    Article  CAS  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G, Beretta O, Vitulli F, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot (Lond) 103:181–196

    Article  CAS  Google Scholar 

  • Magneschi L, Kudahettige RL, Alpi A, Perata P (2009) Comparative analysis of anoxic coleoptile elongation in rice varieties: relationship between coleoptile length and carbohydrate levels, fermentative metabolism and anaerobic gene expression. Plant Biol 11:561–573

    Article  CAS  PubMed  Google Scholar 

  • Matsumura H, Takano T, Takeda G, Uchimiya H (1998) Adh1 is transcriptionally active but its translational product is reduced in a rad mutant of rice (Oryza sativa L.), which is vulnerable to submergence stress. Theor Appl Genet 97:1197–1203

    Article  CAS  Google Scholar 

  • Mustroph A, Boamfa E, Laarhoven LJ, Harren FM, Albrecht G, Grimm B (2006) Organ-specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. I: dark ethanol production is dominated by the shoots. Planta 225:103–114

    Article  CAS  PubMed  Google Scholar 

  • Perata P, Alpi A (1993) Plant responses to anaerobiosis. Plant Sci 93:1–17

    Article  CAS  Google Scholar 

  • Perata P, Pozueta-Romero J, Akazawa T, Yamaguchi J (1992) Effect of anoxia on starch breakdown in rice and wheat seeds. Planta 188:611–618

    Article  CAS  PubMed  Google Scholar 

  • Perata P, Guglielminetti L, Alpi A (1997) Mobilization of endosperm reserves in cereal seeds under anoxia. Ann Bot (Lond) 79:49–56

    Article  CAS  Google Scholar 

  • Pompeiano A, Fanucchi F, Guglielminetti L (2013a) Amylolytic activity and carbohydrate levels in relation to coleoptile anoxic elongation in Oryza sativa genotypes. J Plant Res 126:787–794

    Article  CAS  PubMed  Google Scholar 

  • Pompeiano A, Volpi I, Volterrani M, Guglielminetti L (2013b) N source affects freeze tolerance in bermudagrass and zoysiagrass. Acta Agric Scand Sect B Soil Plant Sci 63:341–351

    CAS  Google Scholar 

  • Pompeiano A, Vita F, Alpi A, Guglielminetti L (2015) Arundo donax L. response to low oxygen stress. Environ Exp Bot 111:147–154

    Article  CAS  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Setter TL, Ella ES, Valdez AP (1994) Relationship between coleoptile elongation and alcoholic fermentation in rice exposed to anoxia. II. Cultivar differences. Ann Bot (Lond) 74:273–279

    Article  Google Scholar 

  • Tobias RB, Boyer CD, Shannon JC (1992) Alterations in carbohydrate intermediates in the endosperm of starch-deficient maize (Zea mays L.) genotypes. Plant Physiol 99:146–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Guglielminetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pompeiano, A., Guglielminetti, L. Carbohydrate metabolism in germinating caryopses of Oryza sativa L. exposed to prolonged anoxia. J Plant Res 129, 833–840 (2016). https://doi.org/10.1007/s10265-016-0840-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-016-0840-1

Keywords

Navigation