Skip to main content
Log in

Amylolytic activity and carbohydrate levels in relation to coleoptile anoxic elongation in Oryza sativa genotypes

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Among starchy seeds, rice has the unique capacity to germinate successfully under complete anaerobiosis. In this conditions, starch degradation is supported by a complete set of starch-degrading enzymes that are absent or inactive in cereals except rice. A characterization of carbohydrate metabolism and starch-degrading enzyme activity across twenty-nine genotypes of Oryza sativa L. is presented here. The zymogram of amylolytic activities present in rice embryos and endosperms under anaerobic conditions seven days after sowing (DAS) revealed marked differences among cultivars. Coleoptile elongation was positively correlated with total amylolytic activities and α-amylase activity in embryos, and negatively correlated with α-amylase activity in endosperm. Moreover, carbohydrate content in embryos was found to be positively correlated with total amylolytic activities under anaerobic conditions, while a negative relationship was recorded in the endosperm. Carbohydrate status in rice seedlings has a primary importance in sustaining coleoptile elongation towards the surface. The relationship between carbohydrate level in embryo and anoxic germination, as well as with total amylolytic activities present in rice embryo under anaerobic condition 7 DAS, is consistent with the role of sugar metabolism to support rice germination under oxygen-deprived environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alpi A, Beevers H (1983) Effects of O2 concentration on rice seedlings. Plant Physiol 71:30–34

    Article  PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill D (2010) Submergence tolerant rice: SUB1′s journey from landrace to modern cultivar. Rice 3:138–147

    Article  Google Scholar 

  • Fukuda A, Yoshinaga S, Nagata K, Shiratsuchi H (2008) Rice cultivars with higher sucrose synthase activity develop longer coleoptiles under submerged conditions. Plant Prod Sci 11:67–75

    Article  CAS  Google Scholar 

  • Gibbs J, Greenway H (2003) Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:353–356

    Article  Google Scholar 

  • Gibbs J, Morrell S, Valdez A, Setter TL, Greenway H (2000) Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. J Exp Bot 51:785–796

    Article  PubMed  CAS  Google Scholar 

  • Guglielminetti L, Perata P, Alpi A (1995a) Effect of anoxia on carbohydrate-metabolism in rice seedlings. Plant Physiol 108:735–741

    PubMed  CAS  Google Scholar 

  • Guglielminetti L, Yamaguchi J, Perata P, Alpi A (1995b) Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol 109:1069–1076

    PubMed  CAS  Google Scholar 

  • Guglielminetti L, Loreti E, Perata P, Alpi A (1999) Sucrose synthesis in cereal grains under oxygen deprivation. J Plant Res 112:353–359

    Article  CAS  Google Scholar 

  • Guglielminetti L, Busilacchi HA, Alpi A (2000) Effect of anoxia on α-amylase induction in maize caryopsis. J Plant Res 113:185–192

    Article  CAS  Google Scholar 

  • Guglielminetti L, Morita A, Yamaguchi J, Loreti E, Perata P, Alpi A (2006) Differential expression of two fructokinases in Oryza sativa seedlings grown under aerobic and anaerobic conditions. J Plant Res 119:351–356

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Greenway H, Colmer TD (2003) Anoxia tolerance in rice seedlings: exogenous glucose improves growth of an anoxia-’intolerant’, but not of a ‘tolerant’ genotype. J Exp Bot 54:2363–2373

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB, Ram PC (2003) Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot 91:227–241

    Article  PubMed  CAS  Google Scholar 

  • Kato-Noguchi H, Sasaki R, Yasuda Y (2008) Anoxia tolerance and α-amylase activity in four rice cultivars. Plant Growth Regul 55:35–41

    Article  CAS  Google Scholar 

  • Loreti E, Yamaguchi J, Alpi A, Perata P (2003) Sugar Modulation of α-Amylase Genes under Anoxia. Ann Bot 91:143–148

    Article  PubMed  CAS  Google Scholar 

  • Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot 103:181–196

    Article  PubMed  CAS  Google Scholar 

  • Magneschi L, Kudahettige RL, Alpi A, Perata P (2009) Comparative analysis of anoxic coleoptile elongation in rice varieties: relationship between coleoptile length and carbohydrate levels, fermentative metabolism and anaerobic gene expression. Plant Biol 11:561–573

    Article  PubMed  CAS  Google Scholar 

  • Pearce DME, Jackson MB (1991) Comparison of growth responses of barnyard grass (Echinochloa oryzoides) and rice (Oryza sativa) to submergence, ethylene, carbon dioxide and oxygen shortage. Ann Bot 68:201–209

    Google Scholar 

  • Perata P, Alpi A (1993) Plant responses to anaerobiosis. Plant Sci 93:1–17

    Article  CAS  Google Scholar 

  • Perata P, Pozueta-Romero J, Akazawa T, Yamaguchi J (1992) Effect of anoxia on starch breakdown in rice and wheat seeds. Planta 188:611–618

    Article  CAS  Google Scholar 

  • Perata P, Geshi N, Yamaguchi J, Akazawa T (1993) Effect of anoxia on the induction of α-amylase in cereal seeds. Planta 191:402–408

    Article  CAS  Google Scholar 

  • Perata P, Guglielminetti L, Alpi A (1997) Mobilization of endosperm reserves in cereal seeds under anoxia. Ann Bot 79:49–56

    Article  CAS  Google Scholar 

  • Ranjhan S, Karrer EE, Rodriguez RL (1992) Localizing a-Amylase Gene Expression in Germinated Rice Grains. Plant Cell Physiol 33:73–79

    CAS  Google Scholar 

  • Raskin I, Kende H (1984) Effect of submergence on translocation, starch content and amylolytic activity in deep-water rice. Planta 162:556–559

    Article  CAS  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Setter TL, Laureles EV (1996) The beneficial effect of reduced elongation growth on submergence tolerance of rice. J Exp Bot 47:1551–1559

    Article  CAS  Google Scholar 

  • Setter TL, Ella ES, Valdez AP (1994) Relationship between coleoptile elongation and alcoholic fermentation in rice exposed to anoxia. II. Cultivar differences. Ann Bot 74:273–279

    Article  Google Scholar 

  • Singh HP, Singh BB, Ram PC (2001) Submergence tolerance of rainfed lowland rice: search for physiological marker traits. J Plant Physiol 158:883–889

    Article  CAS  Google Scholar 

  • Smith D (1981) Removing and analyzing total nonstructural carbohydrates from plant tissue. Res Rep R2107 Wis Agric Exp Stn

  • Sugimoto N, Takeda G, Nagato Y, Yamaguchi J (1998) Temporal and spatial expression of the Œ ± —Amylase gene during seed germination in rice and barley. Plant Cell Physiol 39:323–333

    Article  CAS  Google Scholar 

  • Tobias RB, Boyer CD, Shannon JC (1992) Alterations in carbohydrate intermediates in the endosperm of starch-deficient maize (Zea mays L.) genotypes. Plant Physiol 99:146–152

    Article  PubMed  CAS  Google Scholar 

  • Toojinda T, Siangliw M, Tragoonrung S, Vanavichit A (2003) Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann Bot 91:243–253

    Article  PubMed  CAS  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Google Scholar 

  • Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breeding 2:219–224

    Article  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  PubMed  CAS  Google Scholar 

  • Yamada N (1959) Physiological basis of resistance of rice plant against overhead flooding. Bull Nature Inst Agric Sci 8:1–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Guglielminetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pompeiano, A., Fanucchi, F. & Guglielminetti, L. Amylolytic activity and carbohydrate levels in relation to coleoptile anoxic elongation in Oryza sativa genotypes. J Plant Res 126, 787–794 (2013). https://doi.org/10.1007/s10265-013-0567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-013-0567-1

Keywords

Navigation