Skip to main content
Log in

Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation

  • Current Topics in Plant Research
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Microtubules are highly dynamic structures that control the spatiotemporal pattern of cell growth and division. Microtubule dynamics are regulated by reversible protein phosphorylation involving both protein kinases and phosphatases. Never in mitosis A (NIMA)-related kinases (NEKs) are a family of serine/threonine kinases that regulate microtubule-related mitotic events in fungi and animal cells (e.g. centrosome separation and spindle formation). Although plants contain multiple members of the NEK family, their functions remain elusive. Recent studies revealed that NEK6 of Arabidopsis thaliana regulates cell expansion and morphogenesis through β-tubulin phosphorylation and microtubule destabilization. In addition, plant NEK members participate in organ development and stress responses. The present phylogenetic analysis indicates that plant NEK genes are diverged from a single NEK6-like gene, which may share a common ancestor with other kinases involved in the control of microtubule organization. On the contrary, another mitotic kinase, polo-like kinase, might have been lost during the evolution of land plants. We propose that plant NEK members have acquired novel functions to regulate cell growth, microtubule organization, and stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe T, Hashimoto T (2005) Altered microtubule dynamics by expression of modified alpha-tubulin protein causes right-handed helical growth in transgenic Arabidopsis plants. Plant J 43:191–204

    Article  CAS  PubMed  Google Scholar 

  • Abe T, Thitamadee S, Hashimoto T (2004) Microtubule defects and cell morphogenesis in the lefty1lefty2 tubulin mutant of Arabidopsis thaliana. Plant Cell Physiol 45:211–220

    Article  CAS  PubMed  Google Scholar 

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Agueci F, Rutten T, Demidov D, Houben A (2011) Arabidopsis AtNek2 kinase is essential and associates with microtubules. Plant Mol Biol Rep 30:339–348

    Article  CAS  Google Scholar 

  • Alvarado-Kristensson M, Rodríguez MJ, Silió V, Valpuesta JM, Carrera AC (2009) SADB phosphorylation of γ-tubulin regulates centrosome duplication. Nat Cell Biol 11:1081–1092

    Article  CAS  PubMed  Google Scholar 

  • Ambrose JC, Shoji T, Kotzer AM, Pighin JA, Wasteneys GO (2007) The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19:2763–2775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ambrose C, Allard JF, Cytrynbaum EN, Wasteneys GO (2011) A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat Commun 2:430

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ambrose C, Ruan Y, Gardiner J, Tamblyn LM, Catching A, Kirik V, Marc J, Overall R, Wasteneys GO (2013) CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana. Dev Cell 24:649–659

    Article  CAS  PubMed  Google Scholar 

  • Azimzadeh J, Nacry P, Christodoulidou A, Drevensek S, Camilleri C, Amiour N, Parcy F, Pastuglia M, Bouchez D (2008) Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 20:2146–2159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ban Y, Kobayashi Y, Hara T, Hamada T, Hashimoto T, Takeda S, Hattori T (2013) α-tubulin is rapidly phosphorylated in response to hyperosmotic stress in rice and Arabidopsis. Plant Cell Physiol 54:848–858

    Article  CAS  PubMed  Google Scholar 

  • Barisic M, e Sousa RS, Tripathy SK, Magiera MM, Zaytsev AV, Pereira AL, Janke C, Grishchuk EL, Maiato H (2015) Microtubule detyrosination guides chromosomes during mitosis. Science 348:799–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171

    Article  CAS  PubMed  Google Scholar 

  • Baskin TI, Wilson JE (1997) Inhibitors of protein kinases and phosphatases alter root morphology and disorganize cortical microtubules. Plant Physiol 113:493–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beck M, Komis G, Müller J, Menzel D, Samaj J (2010) Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22:755–771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belham C, Roig J, Caldwell JA, Aomaya Y, Kemp BE, Comb M, Avruch J (2003) A mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates Nek6 and Nek7 kinases. J Biol Chem 278:34897–34909

    Article  CAS  PubMed  Google Scholar 

  • Ben-Nissan G, Cui W, Kim DJ, Yang Y, Yoo BC, Lee JY (2008) Arabidopsis casein kinase 1-like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules. Plant Physiol 148:1897–1907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berger F, Twell D (2011) Germline specification and function in plants. Annu Rev Plant Biol 62:461–484

    Article  CAS  PubMed  Google Scholar 

  • Bertran MT, Sdelci S, Regué L, Avruch J, Caelles C, Roig J (2011) Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. EMBO J 30:2634–2647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bichet A, Desnos T, Turner S, Grandjean O, Höfte H (2001) BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. Plant J 25:137–148

    Article  CAS  PubMed  Google Scholar 

  • Binarová P, Cenklová V, Procházková J, Doskocilová A, Volc J, Vrlík M, Bögre L (2006) γ-tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis. Plant Cell 18:1199–1212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Blume Y, Yemets A, Sulimenko V, Sulimenko T, Chan J, Lloyd C, Dráber P (2008) Tyrosine phosphorylation of plant tubulin. Planta 229:143–150

    Article  CAS  PubMed  Google Scholar 

  • Bouquin T, Mattsson O, Næsted H, Foster R, Mundy J (2003) The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J Cell Sci 116:791–801

    Article  CAS  PubMed  Google Scholar 

  • Bradley BA, Quarmby LM (2005) A NIMA-related kinase, Cnk2p, regulates both flagellar length and cell size in Chlamydomonas. J Cell Sci 118:3317–3326

    Article  CAS  PubMed  Google Scholar 

  • Bringmann M, Landrein B, Schudoma C, Hamant O, Hauser MT, Persson S (2012) Cracking the elusive alignment hypothesis: the microtubule-cellulose synthase nexus unraveled. Trends Plant Sci 17:666–674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burk D, Ye ZH (2002) Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein. Plant Cell 14:2145–2160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14:833–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cloutier M, Vigneault F, Lachance D, Séguin A (2005) Characterization of a poplar NIMA-related kinase PNek1 and its potential role in meristematic activity. FEBS Lett 579:4659–4665

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • Da Silva EAA, Toorop PE, Van Lammeren AAM, Hilhorst HWM (2008) ABA inhibits embryo cell expansion and early cell division events during coffee (Coffea arabica ‘Rubi’) seed germination. Ann Bot 102:425–433

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Demidov D, Van Damme D, Geelen D, Blattner FR, Houben A (2005) Identification and dynamics of two classes of aurora-like kinases in Arabidopsis and other plants. Plant Cell 17:836–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demidov D, Hesse S, Tewes A, Rutten T, Fuchs J, Ashtiyani RK, Lein S, Fischer A, Reuter G, Houben A (2009) Aurora1 phosphorylation activity on histone H3 and its cross-talk with other post-translational histone modifications in Arabidopsis. Plant J 59:221–230

    Article  CAS  PubMed  Google Scholar 

  • Drevensek S, Goussot M, Duroc Y, Christodoulidou A, Steyaert S, Schaefer E, Duvernois E, Grandjean O, Vantard M, Bouchez D, Pastuglia M (2012) The Arabidopsis TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. Plant Cell 24:178–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eng RC, Wasteneys GO (2014) The microtubule plus-end tracking protein ARMADILLO-REPEAT KINESIN1 promotes microtubule catastrophe in Arabidopsis. Plant Cell 26:3372–3386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fourest-Lieuvin A, Peris L, Gache V, Garcia-Saez I, Juillan-Binard C, Lantez V, Job D (2006) Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol Biol Cell 17:1041–1050

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fry AM, O’Regan L, Sabir SR, Bayliss R (2012) Cell cycle regulation by the NEK family of protein kinases. J Cell Sci 125:1–11

    Article  CAS  Google Scholar 

  • Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19:1827–1832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujii S, Yamada M, Toriyama K (2009) Cytoplasmic male sterility-related protein kinase, OsNek3, is regulated downstream of mitochondrial protein phosphatase 2C, DCW11. Plant Cell Physiol 50:828–837

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Himmelspach R, Hocart CH, Williamson RE, Mansfield SD, Wasteneys GO (2011) Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis. Plant J 66:915–928

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Lechner B, Barton DA, Overall RL, Wasteneys GO (2012) The missing link: do cortical microtubules define plasma membrane nanodomains that modulate cellulose biosynthesis? Protoplasma 249(Suppl 1):S59–S67

    Article  PubMed  CAS  Google Scholar 

  • Fujita S, Pytela J, Hotta T, Kato T, Hamada T, Akamatsu R, Ishida Y, Kutsuna N, Hasezawa S, Nomura Y, Nakagami H, Hashimoto T (2013) An atypical tubulin kinase mediates stress-induced microtubule depolymerization in Arabidopsis. Curr Biol 23:1969–1978

    Article  CAS  PubMed  Google Scholar 

  • Gifford EM, Foster AS (1989) Morphology and evolution of vascular plants, 3rd edn. Freeman, New York

    Google Scholar 

  • Grallert A, Hagan IM (2002) Schizosaccharomyces pombe NIMA-related kinase Fin1, regulates spindle formation and an affinity of Polo for the SPB. EMBO J 21:3096–3107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138:1404–1405

    Article  CAS  PubMed  Google Scholar 

  • Hamada T (2014) Microtubule organization and microtubule-associated proteins in plant cells. Int Rev Cell Mol Biol 312:1–52

    Article  PubMed  Google Scholar 

  • Hamada T, Igarashi H, Itoh TJ, Shimmen T, Sonobe S (2004) Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells, a member of the XMAP215/MOR1 family. Plant Cell Physiol 45:1233–1242

    Article  CAS  PubMed  Google Scholar 

  • Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655

    Article  CAS  PubMed  Google Scholar 

  • Hames RS, Wattam SL, Yamano H, Bacchieri R, Fry AM (2001) APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J 20:7117–7127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hames RS, Crookes RE, Straatman KR, Merdes A, Hayes MJ, Faragher AJ, Fry AM (2005) Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1, and localized proteasomal degradation. Mol Biol Cell 16:1711–1724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hammond JW, Cai D, Verhey KJ (2008) Tubulin modifications and their cellular functions. Curr Opin Cell Biol 20:71–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hardham AR (2013) Microtubules and biotic interactions. Plant J 75:278–289

    Article  CAS  PubMed  Google Scholar 

  • Hartman JJ, Mahr J, McNally K, Okawa K, Iwamatsu A, Thomas S, Cheesman S, Heuser J, Vale RD, McNally FJ (1998) Katanin, a microtubule-severing protein, is a novel AAA ATPase that targets to the centrosome using a WD40-containing subunit. Cell 93:277–287

    Article  CAS  PubMed  Google Scholar 

  • Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jönsson H, Traas J, Meyerowitz EM (2010) Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol 8:e1000516

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ho CM, Hotta T, Kong Z, Zeng CJ, Sun J, Lee YR, Liu B (2011) Augmin plays a critical role in organizing the spindle and phragmoplast microtubule arrays in Arabidopsis. Plant Cell 23:2606–2618

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N, Seo M, Sato S, Yamada T, Mori H, Tajima N, Moriyama T, Ikeuchi M, Watanabe M, Wada H, Kobayashi K, Saito M, Masuda T, Sasaki-Sekimoto Y, Mashiguchi K, Awai K, Shimojima M, Masuda S, Iwai M, Nobusawa T, Narise T, Kondo S, Saito H, Sato R, Murakawa M, Ihara Y, Oshima-Yamada Y, Ohtaka K, Satoh M, Sonobe K, Ishii M, Ohtani R, Kanamori-Sato M, Honoki R, Miyazaki D, Mochizuki H, Umetsu J, Higashi K, Shibata D, Kamiya Y, Sato N, Nakamura Y, Tabata S, Ida S, Kurokawa K, Ohta H (2014) Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat Commun 5:3978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horio T, Hotani H (1986) Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–607

    Article  CAS  PubMed  Google Scholar 

  • Hotta T, Kong Z, Ho CM, Zeng CJ, Horio T, Fong S, Vuong T, Lee YR, Liu B (2012) Characterization of the Arabidopsis augmin complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays. Plant Cell 24:1494–1509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ikeno S, Hirase S (1897) Spermatozoids in gymnosperms. Ann Bot 11:344–345

    Google Scholar 

  • Ishida K, Katsumi M (1992) Effects of gibberellin and abscisic acid on the cortical microtubule orientation in hypocotyl cells of light-grown cucumber seedlings. Int J Plant Sci 153:155–163

    Article  CAS  Google Scholar 

  • Ishida T, Kaneko Y, Iwano M, Hashimoto T (2007a) Helical microtubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proc Natl Acad Sci USA 104:8544–8549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishida T, Thitamadee S, Hashimoto T (2007b) Twisted growth and organization of cortical microtubules. J Plant Res 120:61–70

    Article  CAS  PubMed  Google Scholar 

  • Jones MA, Raymond MJ, Smirnoff N (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J 45:83–100

    Article  CAS  PubMed  Google Scholar 

  • Kawabe A, Matsunaga S, Nakagawa K, Kurihara D, Yoneda A, Hasezawa S, Uchiyama S, Fukui K (2005) Characterization of plant Aurora kinases during mitosis. Plant Mol Biol 58:1–13

    Article  CAS  PubMed  Google Scholar 

  • Kawamura E, Wasteneys GO (2008) MOR1, the Arabidopsis thaliana homologue of Xenopus MAP215, promotes rapid growth and shrinkage, and suppresses the pausing of microtubules in vivo. J Cell Sci 121:4114–4123

    Article  CAS  PubMed  Google Scholar 

  • Kawamura E, Himmelspach R, Rashbrooke MC, Whittington AT, Gale KR, Collings DA, Wasteneys GO (2006) MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol 140:102–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keck JM, Jones MH, Wong CC, Binkley J, Chen D, Jaspersen SL, Holinger EP, Xu T, Niepel M, Rout MP, Vogel J, Sidow A, Yates JR III, Winey M (2011) A cell cycle phosphoproteome of the yeast centrosome. Science 332:1557–1561

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Choi HI, Ryu HJ, Park JH, Kim MD, Kim SY (2004) ARIA, an Arabidopsis arm repeat protein interacting with a transcriptional regulator of abscisic acid-responsive gene expression, is a novel abscisic acid signaling component. Plant Physiol 136:3639–3648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirik V, Herrmann U, Parupalli C, Sedbrook JC, Ehrhardt DW, Hülskamp M (2007) CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis. J Cell Sci 120:4416–4425

    Article  CAS  PubMed  Google Scholar 

  • Kirik A, Ehrhardt DW, Kirik V (2012) TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells. Plant Cell 24:1158–1170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Kohoutová L, Kourová H, Nagy SK, Volc J, Halada P, Mészáros T, Meskiene I, Bögre L, Binarová P (2015) The Arabidopsis mitogen-activated protein kinase 6 is associated with γ-tubulin on microtubules, phosphorylates EB1c and maintains spindle orientation under nitrosative stress. New Phytol. doi:10.1111/nph.13501

    PubMed  Google Scholar 

  • Kollman JM, Merdes A, Mourey L, Agard DA (2011) Microtubule nucleation by γ-tubulin complexes. Nat Rev Mol Cell Biol 12:709–721

    Article  CAS  PubMed  Google Scholar 

  • Kong Z, Hotta T, Lee YRJ, Horio T, Liu B (2010) The γ-tubulin complex protein GCP4 is required for organizing functional microtubule arrays in Arabidopsis thaliana. Plant Cell 22:191–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kosetsu K, Matsunaga S, Nakagami H, Colcombet J, Sasabe M, Soyano T, Takahashi Y, Hirt H, Machida Y (2010) The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell 22:3778–3790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krupnova T, Sasabe M, Ghebreghiorghis L, Gruber CW, Hamada T, Dehmel V, Strompen G, Stierhof Y-D, Lukowitz W, Kemmerling B, Machida Y, Hashimoto T, Mayer U, Jürgens G (2009) Microtubule-associated kinase-like protein RUNKEL needed for cell plate expansion in Arabidopsis cytokinesis. Curr Biol 19:518–523

    Article  CAS  PubMed  Google Scholar 

  • Kumagai F, Nagata T, Yahara N, Moriyama Y, Horio T, Naoi K, Hashimoto T, Murata T, Hasezawa S (2003) γ-tubulin distribution during cortical microtubule reorganization at the M/G1 interface in tobacco BY-2 cells. Eur J Cell Biol 82:43–51

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Lyle KS, Gierke S, Matov A, Danuser G, Wittmann T (2009) GSK3β phosphorylation modulates CLASP-microtubule association and lamella microtubule attachment. J Cell Biol 184:895–908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurihara D, Matsunaga S, Kawabe A, Fujimoto S, Noda M, Uchiyama S, Fukui K (2006) Aurora kinase is required for chromosome segregation in tobacco BY-2 cells. Plant J 48:572–580

    Article  CAS  PubMed  Google Scholar 

  • Kurihara D, Matsunaga S, Uchiyama S, Fukui K (2008) Live cell imaging reveals plant aurora kinase has dual roles during mitosis. Plant Cell Physiol 49:1256–1261

    Article  CAS  PubMed  Google Scholar 

  • Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee YR, Li Y, Liu B (2007) Two Arabidopsis phragmoplast-associated kinesins play a critical role in cytokinesis during male gametogenesis. Plant Cell 19:2595–2605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SJ, Cho DL, Kang JY, Kim MD, Kim SY (2010) AtNEK6 interacts with ARIA and is involved in ABA response during seed germination. Mol Cells 29:559–566

    Article  CAS  PubMed  Google Scholar 

  • Lei L, Li S, Bashline L, Gu Y (2014) Dissecting the molecular mechanism underlying the intimate relationship between cellulose microfibrils and cortical microtubules. Front Plant Sci 5:90

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin TC, Gombos L, Neuner A, Sebastian D, Olsen JV, Hrle A, Benda C, Schiebel E (2011) Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function. PLoS One 6:e19700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin D, Cao L, Zhou Z, Zhu L, Ehrhardt D, Yang Z, Fu Y (2013) Rho GTPase signaling activates microtubule severing to promote microtubule ordering in Arabidopsis. Curr Biol 23:290–297

    Article  CAS  PubMed  Google Scholar 

  • Lindeboom JJ, Nakamura M, Hibbel A, Shundyak K, Gutierrez R, Ketelaar T, Emons AM, Mulder BM, Kirik V, Ehrhardt DW (2013) A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing. Science 342:1245533

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) γ-Tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6:303–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loughlin R, Wilbur JD, McNally FJ, Nédélec FJ, Heald R (2011) Katanin contributes to interspecies spindle length scaling in Xenopus. Cell 147:1397–1407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahjoub MR, Montpetit B, Zhao L, Finst RJ, Goh B, Kim AC, Quarmby LM (2002) The FA2 gene of Chlamydomonas encodes a NIMA family kinase with roles in cell cycle progression and microtubule severing during deflagellation. J Cell Sci 115:1759–1768

    CAS  PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  • Mardin BR, Agircan FG, Lange C, Schiebel E (2011) Plk1 controls the Nek2A-PP1γ antagonism in centrosome disjunction. Curr Biol 21:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Melixetian M, Klein DK, Sørensen CS, Helin K (2009) NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol 11:1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Mihara M, Itoh T, Izawa T (2009) SALAD database: a motif-based database of protein annotations for plant comparative genomics. Nuc Acid Res 38:D835–D842

    Article  CAS  Google Scholar 

  • Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  • Moritz M, Braunfeld MB, Guénebaut V, Heuser J, Agard DA (2000) Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nat Cell Biol 2:365–370

    Article  CAS  PubMed  Google Scholar 

  • Motose H, Tominaga R, Wada T, Sugiyama M, Watanabe Y (2008) A NIMA-related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules. Plant J 58:829–844

    Article  CAS  Google Scholar 

  • Motose H, Hamada T, Yoshimoto K, Murata T, Hasebe M, Watanabe Y, Hashimoto T, Sakai T, Takahashi T (2011) NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana. Plant J 67:993–1005

    Article  CAS  PubMed  Google Scholar 

  • Motose H, Takatani S, Ikeda T, Takahashi T (2012) NIMA-related kinases regulate directional cell growth and organ development through microtubule function in Arabidopsis thaliana. Plant Signal Behav 7:1552–1555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murata T, Hasebe M (2007) Microtubule-dependent microtubule nucleation in plant cells. J Plant Res 120:73–78

    Article  CAS  PubMed  Google Scholar 

  • Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nat Cell Biol 7:961–968

    Article  CAS  PubMed  Google Scholar 

  • Murata T, Sano T, Sasabe M, Nonaka S, Higashiyama T, Hasezawa S, Machida Y, Hasebe M (2013) Mechanism of microtubule array expansion in the cytokinetic phragmoplast. Nat Commun 4:1967

    PubMed Central  PubMed  Google Scholar 

  • Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, Toyoda T, Tomita M, Ishihama Y, Shirasu K (2010) Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol 153:1161–1174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura M, Hashimoto T (2009) A mutation in the Arabidopsis γ-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci 122:2208–2217

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Naoi K, Shoji T, Hashimoto T (2004) Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells. Plant Cell Physiol 45:1330–1334

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Ehrhardt DW, Hashimoto T (2010) Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat Cell Biol 12:1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Yagi N, Kato T, Fujita S, Kawashima N, Ehrhardt DW, Hashimoto T (2012) Arabidopsis GCP3-interacting protein 1/MOZART 1 is an integral component of the γ-tubulin-containing microtubule nucleating complex. Plant J 71:216–225

    Article  CAS  PubMed  Google Scholar 

  • Naoi K, Hashimoto T (2004) A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization. Plant Cell 16:1841–1853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nick P (2013) Microtubules, signalling and abiotic stress. Plant J 75:309–323

    Article  CAS  PubMed  Google Scholar 

  • Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X, Liu X, Dai L, Xie Q, Wang GL (2011) The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol 157:242–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y (2001) The NPK1 mitogen-activated kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev 15:352–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, Yamazaki Y, Machida Y (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109:87–99

    Article  CAS  PubMed  Google Scholar 

  • Noguchi K, Fukazawa H, Murakami Y, Uehara Y (2002) Nek11, a new member of the NIMA family of kinases, involved in DNA replication and genotoxic stress responses. J Biol Chem 277:39655–39665

    Article  CAS  PubMed  Google Scholar 

  • Noguchi K, Fukazawa H, Murakami Y, Uehara Y (2004) Nucleolar Nek11 is a novel target of Nek2A in G1/S-arrested cells. J Biol Chem 279:32716–32727

    Article  CAS  PubMed  Google Scholar 

  • Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T (2008) Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol 49:1645–1658

    Article  CAS  PubMed  Google Scholar 

  • Notaguchi M, Daimon Y, Abe M, Araki T (2009) Adaptation of a seedling micro-grafting technique to the study of long-distance signaling in flowering of Arabidopsis thaliana. J Plant Res 122:201–214

    Article  CAS  PubMed  Google Scholar 

  • O’Connell MJ, Krien MJE, Hunter T (2003) Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 13:221–228

    Article  PubMed  CAS  Google Scholar 

  • O’Regan L, Blot J, Fry AM (2007) Mitotic regulation by NIMA-related kinases. Cell Div 2:25–36

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Oda Y, Fukuda H (2012) Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 337:1333–1336

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Fukuda H (2013) Rho of plant GTPase signaling regulates the behavior of Arabidopsis kinesin-13A to establish secondary cell wall patterns. Plant Cell 25:4439–4450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oda Y, Iida Y, Kondo Y, Fukuda H (2010) Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein. Curr Biol 20:1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Oh SA, Johnson A, Smertenko A, Rahman D, Park SK, Hussey PJ, Twell D (2005) A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Curr Biol 15:2107–2111

    Article  CAS  PubMed  Google Scholar 

  • Oh SA, Allen T, Kim GJ, Sidorova A, Borg M, Park SK, Twell D (2012) Arabidopsis Fused kinase and the Kinesin-12 subfamily constitute a signalling module required for phragmoplast expansion. Plant J 72:308–319

    Article  CAS  PubMed  Google Scholar 

  • Osmani SA, May GS, Morris NR (1987) Regulation of the mRNA levels of nimA, a gene required for the G2-M transition in Aspergillus nidulans. J Cell Biol 104:1495–1504

    Article  CAS  PubMed  Google Scholar 

  • Osmani SA, Pu RT, Morris NR (1988) Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell 53:237–244

    Article  CAS  PubMed  Google Scholar 

  • Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495

    Article  CAS  PubMed  Google Scholar 

  • Parker JD, Bradley BA, Mooers AO, Quarmby LM (2007) Phylogenetic analysis of the Neks reveals early diversification of ciliary-cell cycle kinases. PLoS ONE 2:e1076

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K, Evrard JL, Schmit AC, Guerche P, Bouchez D (2006) γ-tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18:1412–1425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13:2687–2702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quarmby LM, Mahjoub MR (2005) Caught Nek-ing: cilia and centrioles. J Cell Sci 118:5161–5169

    Article  CAS  PubMed  Google Scholar 

  • Rapley J, Baxter JE, Blot J, Wattam SL, Casenghi M, Meraldi P, Nigg EA, Fry AM (2005) Coordinate regulation of the mother centriole component Nlp by Nek2 and Plk1 protein kinases. Mol Cell Biol 25:1309–1324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rellos P, Ivins FJ, Baxter JE, Pike A, Nott TJ, Parkinson DM, Das S, Howell S, Fedorov O, Shen QY, Fry AM, Knapp S, Smerdon SJ (2007) Structure and regulation of the human Nek2 centrosomal kinase. J Biol Chem 282:6833–6842

    Article  CAS  PubMed  Google Scholar 

  • Richards MW, O’Regan L, Mas-Droux C, Blot JMY, Cheung J, Hoelder S, Fry AM, Bayliss R (2009) An autoinhibitory tyrosine motif in the cell-cycle-regulated Nek7 kinase is released through binding of Nek9. Mol Cell 36:560–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roig J, Mikhailov A, Belham C, Avruch J (2002) Nercc1, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression. Genes Dev 16:1640–1658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakai T, van der Honing H, Nishioka M, Uehara Y, Takahashi M, Fujisawa N, Saji K, Seki M, Shinozaki K, Jones MA, Smirnoff N, Okada K, Wasteneys GO (2008) Armadillo repeat-containing kinesins and a NIMA-related kinase are required for epidermal-cell morphogenesis in Arabidopsis. Plant J 53:157–171

    Article  CAS  PubMed  Google Scholar 

  • Sakiyama M, Shibaoka H (1990) Effects of abscisic acid on the orientation and cold stability of cortical microtubules in epicotyls of the dwarf pea. Protoplasma 157:165–171

    Article  CAS  Google Scholar 

  • Sakiyama-Sogo M, Shibaoka H (1993) Gibberellin A3 and abscisic acid cause the reorientation of cortical microtubules in epicotyls of the decapitated dwarf pea. Plant Cell Physiol 34:431–437

    CAS  Google Scholar 

  • Sammark PJ, Borisy GG (1988) Direct observation of microtubule dynamics in living cells. Nature 332:724–726

    Article  Google Scholar 

  • Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi H, Itoh TJ, Hidaka M, Machida Y (2006) Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev 20:1004–1014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasabe M, Boudolf V, De Veylder L, Inzé D, Genschik P, Machida Y (2011a) Phosphorylation of a mitotic kinesin-like protein and a MAPKKK by cyclin-dependent kinases (CDKs) is involved in the transition to cytokinesis in plants. Proc Natl Acad Sci USA 108:17844–17849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasabe M, Kosetsu K, Hidaka M, Murase A, Machida Y (2011b) Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal Behav 6:743–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sassi M, Ali O, Boudon F, Cloarec G, Abad U, Cellier C, Chen X, Gilles B, Milani P, Friml J, Vernoux T, Godin C, Hamant O, Traas J (2014) An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr Biol 24:2335–2342

    Article  CAS  PubMed  Google Scholar 

  • Sdelci S, Schütz M, Pinyol R, Bertran MT, Regué L, Caelles C, Vernos I, Roig J (2012) Nek9 phosphorylation of NEDD1/GCP-WD contributes to Plk1 control of γ-Tubulin recruitment to the mitotic centrosome. Curr Biol 22:1516–1523

    Article  CAS  PubMed  Google Scholar 

  • Sedbrook JC, Kaloriti D (2008) Microtubules, MAPs and plant directional cell expansion. Trends Plant Sci 13:303–310

    Article  CAS  PubMed  Google Scholar 

  • Shaw SL, Kamyar R, Ehrhardt DW (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300:1715–1718

    Article  CAS  PubMed  Google Scholar 

  • Shibaoka H (1994) Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane. Annu Rev Plant Physiol Plant Mol Biol 45:527–544

    Article  CAS  Google Scholar 

  • Shimamura M, Brown RC, Lemmon BE, Akashi T, Mizuno K, Nishihara N, Tomizawa K, Yoshimoto K, Deguchi H, Hosoya H, Horio T, Mineyuki Y (2004) γ-tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers. Plant Cell 16:45–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shoji T, Suzuki K, Abe T, Kaneko Y, Shi H, Zhu JK, Rus A, Hasegawa PM, Hashimoto T (2006) Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant Cell Physiol 47:1158–1168

    Article  CAS  PubMed  Google Scholar 

  • Sirajuddin M, Rice LM, Vale RD (2014) Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 16:335–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y (2003) NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 17:1055–1067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spinner L, Gadeyne A, Belcram K, Goussot M, Moison M, Duroc Y, Eeckhout D, De Winne N, Schaefer E, Van De Slijke E, Persiau G, Witters E, Gevaert K, De Jaeger G, Bouchez D, Van Damme D, Pastuglia M (2013) A protein phosphatase 2A complex spatially controls plant cell division. Nat Commun. 4:1863

    Article  PubMed  CAS  Google Scholar 

  • Strompen G, El Kasmi F, Richter S, Lukowitz W, Assaad FF, Jürgens G, Mayer U (2002) The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr Biol 2:153–158

    Article  Google Scholar 

  • Sugimoto K, Himmelspach R, Williamson RE, Wasteneys GO (2003) Mutation or drug-dependent microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells. Plant Cell 15:1414–1429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugiyama N, Nakagami H, Mochida K, Daudi A, Tomita M, Shirasu K, Ishihama Y (2008) Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol Syst Biol 4:193

    Article  PubMed Central  PubMed  Google Scholar 

  • Suttangkakul A, Li F, Chung T, Vierstra RD (2011) The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23:3761–3779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi Y, Soyano T, Kosetsu K, Sasabe M, Machida Y (2010) HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana. Plant Cell Physiol 51:1766–1776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takatani S, Hirayama T, Hashimoto T, Takahashi T, Motose H (2015) Abscisic acid induces ectopic outgrowth in epidermal cells through cortical microtubule reorganization in Arabidopsis thaliana. Sci Rep 5:11364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332–335

    Article  CAS  PubMed  Google Scholar 

  • Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in Arabidopsis. Nature 417:193–196

    Article  CAS  PubMed  Google Scholar 

  • Torres-Ruiz RA, Jürgens G (1994) Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120:2967–2978

    CAS  PubMed  Google Scholar 

  • Traas J, Bellini C, Nacry P, Kronenberger J, Bouchez D, Caboche M (1995) Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375:676–677

    Article  CAS  Google Scholar 

  • Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ (2002) MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4:711–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykręt D, Dedieu A, Peaucelle A, Ludynia M, Traas J, Boudaoud A, Kwiatkowska D, Hamant O (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:439–451

    Article  CAS  PubMed  Google Scholar 

  • Verhey KJ, Gaertig J (2007) The tubulin code. Cell Cycle 6:2152–2160

    Article  CAS  PubMed  Google Scholar 

  • Vigneault F, Lachance D, Cloutier M, Pelletier G, Levasseur C, Séguin A (2007) Members of the plant NIMA-related kinases are involved in organ development and vascularization in poplar, Arabidopsis, and rice. Plant J 51:575–588

    Article  CAS  PubMed  Google Scholar 

  • Vogel J, Drapkin B, Oomen J, Beach D, Bloom K, Snyder M (2001) Phosphorylation of γ-tubulin regulates microtubule organization in budding yeast. Dev Cell 1:621–631

    Article  CAS  PubMed  Google Scholar 

  • Walia A, Lee JS, Wasteneys GO, Ellis B (2009) Arabidopsis mitogen-activated protein kinase MPK18 mediates cortical microtubule functions in plant cells. Plant J 59:565–575

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Li J, Yuan M (2007) Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant Cell Physiol 48:1534–1547

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Kurepa J, Hashimoto T, Smalle JA (2011) Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1. Plant Cell 23:3412–3427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wasteneys GO (2002) Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci 115:1345–1354

    CAS  PubMed  Google Scholar 

  • Wasteneys GO, Ambrose JC (2009) Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol 19:62–71

    Article  CAS  PubMed  Google Scholar 

  • Webb M, Jouannic S, Foreman J, Linstead P, Dolan L (2002) Cell specification in the Arabidopsis root epidermis requires the activity of ECTOPIC ROOT HAIR 3—a katanin-p60 protein. Development 129:123–131

    CAS  PubMed  Google Scholar 

  • Wehenkel and Janke (2014) Towards elucidating the tubulin code. Nat Cell Biol 16:303–305

    Article  PubMed  CAS  Google Scholar 

  • Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938–947

    Article  CAS  PubMed  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613

    Article  CAS  PubMed  Google Scholar 

  • Wloga D, Gaertig J (2010) Post-translational modifications of microtubules. J Cell Sci 123:3447–3455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wright AJ, Gallagher K, Smith LG (2009) discordia1 and alternate discordia1 function redundantly at the cortical division site to promote preprophase band formation and orient division planes in maize. Plant Cell 21:234–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang G, Gao P, Zhang H, Huang S, Zheng ZL (2007) A mutation in MRH2 kinesin enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis. PLoS ONE 10:e1074

    Article  CAS  Google Scholar 

  • Yoon GM, Kieber JJ (2013) 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25:1016–1028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng CT, Lee YRJ, Liu B (2009) The WD-40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana. Plant Cell 21:1129–1140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang B, Chen HW, Mu RL, Zhang WK, Zhao MY, Wei W, Wang F, Yu H, Lei G, Zou HF, Ma B, Chen SY, Zhang JS (2011) NIMA-related kinase NEK6 affects plant growth and stress response in Arabidopsis. Plant J 68:830–843

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are most grateful to the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan for Grants in Aid for Scientific Research (22770043, 23119513, 25119715, 25440137 and 26113516) and to the Ryobi Teien Memory Foundation for the grant. It is also a pleasure to thank Prof. Hirokazu Tsukaya for critical reading of our manuscript and Dr. Kimitsune Ishizaki and Prof. Takayuki Kohchi for the sequence information of MpNEK1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Motose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10265_2015_751_MOESM1_ESM.tif

Alignment of the deduced amino acid sequences of NEKs. a-b The activation loop (a) and the flanking sequences of inhibitory Tyr (b) within the kinase domain. c Plant NEK C-terminal motif. P-site is phosphorylation site (TIFF 8681 kb)

Phylogenetic tree of plant NEKs and other protein kinase family using SALAD database (TIFF 54034 kb)

Supplementary material 3 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takatani, S., Otani, K., Kanazawa, M. et al. Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation. J Plant Res 128, 875–891 (2015). https://doi.org/10.1007/s10265-015-0751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0751-6

Keywords

Navigation