Skip to main content
Log in

Regulation of RNA metabolism is important for in vitro dedifferentiation of plant cells

  • JPR Symposium
  • Reprogramming of plant cells as adaptive strategies
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The characteristic high regenerative ability of plants has been exploited to develop in vitro plant regeneration techniques, which are usually initiated by an in vitro dedifferentiation step induced by artificial phytohormone treatment. Recent advances in plant molecular biological and genetic technologies have revealed the importance of the regulation of RNA metabolism, including the control of rRNA biosynthesis, pre-mRNA splicing, and miRNA-based RNA decay, in successful in vitro dedifferentiation. This review provides a brief overview of current knowledge of the roles of RNA metabolism in the dedifferentiation of plant cells in vitro. In addition, the possibility that plant-specific aspects of RNA metabolism regulation are linked closely to their high regenerative ability is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad Y, Boisvert FM, Gregor P, Cobley A, Lamond AI (2009) NOPdb: nucleolar proteome database—2008 update. Nucleic Acids Res 37:D181–D184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avivi Y, Morad V, Ben-Meir H, Zhao J, Kashkush K, Tzfira T, Citovsky V, Grafi G (2004) Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev Dyn 230:12–22

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 22:216–227

    Article  Google Scholar 

  • Brown SJ, Stoilov P, Xing Y (2012) Chromatin and epigenetic regulation of pre-mRNA processing. Hum Mol Genet 353:R1–R7

    Google Scholar 

  • Cooke R, Meyer Y (1981) Hormonal control of tobacco protoplast nucleic acid metabolism during in vitro culture. Planta 152:1–7

    Article  CAS  PubMed  Google Scholar 

  • de Almeida SF, Carmo-Fonseca M (2014) Reciprocal regulatory links between cotranscriptional splicing and chromatin. Semin Cell Dev Biol 32:2–10

    Article  PubMed  Google Scholar 

  • Dieci G, Preti M, Montanini B (2009) Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 94:83–88

    Article  CAS  PubMed  Google Scholar 

  • Fehér A (2014) Somatic embryogenesis: stress-induced remodeling of plant cell fate. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2014.07.005

    PubMed  Google Scholar 

  • Fraser RSS (1975) Studies on messenger and ribosomal RNA synthesis in plant tissue cultures induced to undergo synchronous cell division. Eur J Biochem 50:529–553

    Article  CAS  PubMed  Google Scholar 

  • Fraser RSS, Loening UE (1974) RNA synthesis during synchronous cell division in cultured explants of Jerusalem artichoke tuber. J Exp Bot 25:847–859

    Article  CAS  Google Scholar 

  • Haag JR, Pikaard CS (2011) Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 12:483–492

    Article  CAS  PubMed  Google Scholar 

  • Halbeisen RE, Galgano A, Scherrer T, Gerber AP (2008) Post-transcriptional gene regulation: from genome-wide studies to principles. Cell Mol Life Sci 65:798–813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez N (2001) Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 276:26733–26736

    Article  CAS  PubMed  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Qarshi IA, Nazir H, Ullah I (2012) Plant tissue culture: current status and opportunities. In: Leva A, Rinaldi LMR (eds) Recent advances in plant in vitro culture. InTech, Rijeka, pp 1–28. ISBN:978-953-51-0787-3

  • Ikeuchi M, Sugimoto K, Iwase A (2013) Plant Callus: mechanisms of induction and repression. Plant Cell 25:3159–3173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iwakawa H, Tomari Y (2013) Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 52:591–601

    Article  CAS  PubMed  Google Scholar 

  • James A, Wang Y, Raje H, Rosby R, DiMario P (2014) Nucleolar stress with and without p53. Nucleus 5:402–426

    Article  PubMed  Google Scholar 

  • Konishi M, Sugiyama M (2003) Genetic analysis of adventitious root formation with a novel series of temperature-sensitive mutants of Arabidopsis thaliana. Development 130:5637–5647

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krogan NJ, Peng WT, Cagney G, Robinson MD, Haw R, Zhong G et al (2004) High-definition of macromolecular composition of yeast RNA-processing complexes. Mol Cell 13:225–239

    Article  CAS  PubMed  Google Scholar 

  • Lange H, Sement FM, Gagliardi D (2011) MTR4, a putative RNA helicase and exosome co-factor, is required for proper rRNA biogenesis and development in Arabidopsis thaliana. Plant J 68:51–63

    Article  CAS  PubMed  Google Scholar 

  • Li T, Chen J, Qiu S, Zhang Y, Wang P, Yang L, Lu Y, Shi J (2012) Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar. PLoS One 7:e43451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin S, Gregory RI (2014) Methyltransferases modulate RNA stability in embryonic stem cells. Nat Cell Biol 16:129–131

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Lai Z (2013) Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in Longan (Dimocarpus longan Lour.). PLoS One 8:e60337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu W, Yu W, Hou L, Wang X, Zheng F, Wang W, Liang D, Yang H, Jin Y, Xie X (2014) Analysis of miRNAs and their targets during adventitious shoot organogenesis of Acacia crassicarpa. PLoS One 9:e93438

    Article  PubMed Central  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. WH Freeman, New York

    Google Scholar 

  • Luo Y-C, Zhou H, Li Y, Chen J-Y, Yang J-H, Chen Y-Q, Qu L-H (2006) Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett 580:5111–5116

    Article  CAS  PubMed  Google Scholar 

  • Mallanna SK, Rizzino A (2010) Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev Biol 344:16–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marquez Y, Brown JW, Simpson C, Barta A, Kalyna M (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22:1184–1195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408

    Article  CAS  PubMed  Google Scholar 

  • Minocha SC, Dibona S (1979) Effect of auxin and abscisic acid on RNA and protein synthesis prior to the first cell division in Jerusalem artichoke tuber tissue cultured in vitro. Z Pflanzenphysiol 92:367–374

    Article  CAS  Google Scholar 

  • Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  CAS  PubMed  Google Scholar 

  • Nelles DA, Yeo GW (2010) Alternative splicing in stem cell self-renewal and diferentiation. Adv Exp Med Biol 695:92–104

    Article  CAS  PubMed  Google Scholar 

  • Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 24:2678–2692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohbayashi I, Konishi M, Ebine K, Sugiyama M (2011) Genetic identification of Arabidopsis RID2 as an essential factor involved in pre-rRNA processing. Plant J 67:49–60

    Article  CAS  PubMed  Google Scholar 

  • Ohtani M, Sugiyama M (2005) Involvement of SRD2-mediated activation of snRNA transcription in the control of cell proliferation competence in Arabidopsis. Plant J 43:479–490

    Article  CAS  PubMed  Google Scholar 

  • Ohtani M, Demura T, Sugiyama M (2008) Differential requirement for the function of SRD2, an snRNA transcription activator, in various stages of plant development. Plant Mol Biol 66:303–314

    Article  CAS  PubMed  Google Scholar 

  • Ohtani M, Demura T, Sugiyama M (2010) Particular significance of SRD2-dependent snRNA accumulation in polarized pattern generation during lateral root development of Arabidopsis. Plant Cell Physiol 51:2002–2012

    Article  CAS  PubMed  Google Scholar 

  • Ohtani M, Demura T, Sugiyama M (2013) Arabidopsis root initiation defective1, a deah-box RNA helicase involved in pre-mRNA splicing, is essential for plant development. Plant Cell 25:2056–2069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohtani M, Takebayashi A, Hiroyama R, Xu B, Kudo T, Sakakibara H, Sugiyama M, Demura T (2015) Cell dedifferentiation and organogenesis in vitro require more snRNA than does seedling development in Arabidopsis thaliana. J Plant Res (in press)

  • Ozawa S, Yasutani I, Fukuda H, Komamine A, Sugiyama M (1998) Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana. Development 125:135–142

    CAS  PubMed  Google Scholar 

  • Palmer CM, Bush SM, Maloof JN (2012) Phenotypic and developmental plasticity in plants. eLS. doi:10.1002/9780470015902.a0002092.pub2

    Google Scholar 

  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  CAS  PubMed  Google Scholar 

  • Pulianmackal AJ, Kareem AVK, Durgaprasad K, Trivedi ZB, Prasad K (2014) Competence and regulatory interactions during regeneration in plants. Front Plant Sci 5:142

    Article  PubMed Central  PubMed  Google Scholar 

  • Qiao M, Zhao Z, Song Y, Liu Z, Cao L, Yu Y, Li S, Xiang F (2012) Proper regeneration from in vitro cultured Arabidopsis thaliana requires the microRNA-directed action of an auxin response factor. Plant J 71:14–22

    Article  CAS  PubMed  Google Scholar 

  • Reddy ASN, Marquez Y, Kalyna M, Barta A (2013) Complexity of the alternative splicing landscape in plants. Plant Cell 25:3657–3683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez-Enriquez J, Dickinson HG, Grant-Downton RT (2011) MicroRNA misregulation: an overlooked factor generating somaclonal variation? Trend Plant Sci 16:242–248

    Article  CAS  Google Scholar 

  • Shinohara N, Ohbayashi I, Sugiyama M (2014) Involvement of rRNA biosynthesis in the regulation of CUC1 gene expression and pre-meristematic cell mound formation during shoot regeneration. Front Plant Sci. doi:10.3389/fpls.2014.00159

    PubMed Central  PubMed  Google Scholar 

  • Sugiyama M (2014) Molecular genetic analysis of organogenesis in vitro with temperature-sensitive mutants. Plant Biotechnol Rep 8:29–35

    Article  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamaki H, Konishi M, Daimon Y, Aida M, Tasaka M, Sugiyama M (2009) Identification of novel meristem factors involved in shoot regeneration through the analysis of temperature-sensitive mutants of Arabidopsis. Plant J 57:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Tessadori F, Chupeau MC, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V (2007) Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 120:1200–1208

    Article  CAS  PubMed  Google Scholar 

  • Wilbert ML, Huelga SC, Kapeli K, Stark TJ, Liang TY, Chen SX, Yan BY, Nathanson JL, Hutt KR, Lovci MT et al (2012) LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. Mol Cell 48:195–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Will CL, Lührmann R (2011) Spliceosome structure and function. Cold Spring Harb Perspect Biol 3:a003707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams L, Zhao J, Morozova N, Li Y, Avivi Y, Grafi G (2003) Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev Dyn 228:113–120

    Article  CAS  PubMed  Google Scholar 

  • Wu J (2013) Post-transcriptional gene regulation: RNA processing in Eukaryotes. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Wu X-M, Liu M-Y, Ge X-X, Xu Q, Guo W-W (2011) Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta 233:495–505

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang L, Yuan D, Lindsey K, Zhang X (2013) Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot. doi:10.1093/jxb/ert013

    Google Scholar 

  • Yasutani I, Ozawa S, Nishida T, Sugiyama M, Komamine A (1994) Isolation of temperature-sensitive mutants of Arabidopsis thaliana that are defective in the redifferentiation of shoots. Plant Physiol 105:815–822

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zakrzewska-Placzek M, Souret FF, Sobczyk GJ, Green PJ, Kufel J (2010) Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA. Nucleic Acids Res 38:4487502

    Article  Google Scholar 

  • Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L (2010) Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 398:355–360

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Morozova N, Williams L, Libs L, Avivi Y, Grafi G (2001) Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for S phase. J Biol Chem 276:22772–22778

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Munetaka Sugiyama (University of Tokyo) for critical discussions and helpful suggestions. I also thank Dr. Dominique Gagliardi and Dr. Heike Lange (Université de Strasbourg) for providing the mtr4 mutants, Dr. Kentaro Nakaminami and Dr. Motoaki Seki (RIKEN Center for Sustainable Resource Science) for providing the xrn mutants, and Dr. Taku Demura (Nara Institute of Science and Technology), Dr. Yuichiro Watanabe (University of Tokyo) and Dr. Hiroyasu Motose (Okayama University) for fruitful discussions. This work was supported in part by a Start-up Grant for Women Researchers from the Nara Institute of Science and Technology and by Grants-in-Aid from the Japan Society for the Promotion of Science (Grant numbers 18870028, 24770052, and 25114520 to M.O.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misato Ohtani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohtani, M. Regulation of RNA metabolism is important for in vitro dedifferentiation of plant cells. J Plant Res 128, 361–369 (2015). https://doi.org/10.1007/s10265-015-0700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-015-0700-4

Keywords

Navigation