Skip to main content
Log in

The role of nodules in the tolerance of common bean to iron deficiency

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Iron is vital for the establishment and function of symbiotic root nodules of legumes. Although abundant in the environment, Fe is often a limiting nutrient for plant growth due to its low solubility and availability in some soils. We have studied the mechanism of iron uptake in the root nodules of common bean to evaluate the role of nodules in physiological responses to iron deficiency. Based on experiments using full or partial submergence of nodulated roots in the nutrient solution, our results show that the nodules were affected only slightly under iron deficiency, especially when the nodules were submerged in nutrient solution in the tolerant cultivar. In addition, fully submerged root nodules showed enhanced acidification of the nutrient solution and showed higher ferric chelate reductase activity than that of partially submerged roots in plants cultivated under Fe deficiency. The main results obtained in this work suggest that in addition to preferential Fe allocation from the root system to the nodules, this symbiotic organ probably develops some mechanisms to respond to iron deficiency. These mechanisms were implied especially in nodule Fe absorption efficiency and in the ability of this organ to take up Fe directly from the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Niemi TS, Kahn ML, McDermott TR (1998) Phosphorus uptake by bean nodules. Plant Soil 198:71–78

    Article  CAS  Google Scholar 

  • Arnon D (1949) Copper enzymes in isolated chloroplast Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cesco S, Neumann G, Tomasi N et al (2010) Release of plant-borne lavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    Article  CAS  Google Scholar 

  • Cesco S, Mimmo T, Tonon G et al (2012) Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils 48:123–149

    Article  CAS  Google Scholar 

  • Day DA, Poole PS, Tyerman SD, Rosendahl L (2001) Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell Mol Life Sci 58:61–71

    Article  PubMed  CAS  Google Scholar 

  • Ding F, Wang XF, Shi QH, Wang ML, Yang FJ, Gao QH (2008) Exogenous nitric oxide alleviated the inhibition of photosynthesis and antioxidant enzyme activities in iron-deficient Chinese cabbage (Brassica chinensis L.). Agric Sci China 7:168–179

    Article  CAS  Google Scholar 

  • Ding H, Duan L, Li J, Yan H, Zhao M, Zhang F, Li WX (2010) Cloning and functional analysis of the peanut iron transporter AhIRT1 during iron deficiency stress and intercropping with maize. J Plant Physiol 167:996–1002

    Article  PubMed  CAS  Google Scholar 

  • Donnini S, Castagna A, Ranieri A, Zocchi G (2009) Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. J Plant Physiol 166:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML (2007) It’s elementary: enhancing Fe3+ reduction improves rice yields. Proc Natl Acad Sci USA 104:7311–7312

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition, 2nd edn. Bureau of Horticulture and Plantation Crops. Technical Communication no. 22. Kent: Commonwealth Bureaux of Agriculture, Farnham Royal

  • Higa A, Mori Y, Kitamura Y (2010) Iron deficiency induces changes in riboflavin secretion and the mitochondrial electron transport chain in hairy roots of Hyoscyamus albus. J Plant Physiol 167:870–878

    Article  PubMed  CAS  Google Scholar 

  • Jeong J, Connolly EL (2009) Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant Sci 176:709–714

    Article  CAS  Google Scholar 

  • Jeong J, Guerinot ML (2009) Homing in on iron homeostasis in plants. Trends Plant Sci 15:280–285

    Article  CAS  Google Scholar 

  • Jiang SL, Wu JG, Feng Y, Yang XE, Shi CH (2007) Correlation analysis of mineral element contents and quality traits in milled rice (Oryza sativa L.). J Agric Food Chem 55:9608–9613

    Article  PubMed  CAS  Google Scholar 

  • Jiménez S, Gogorcena Y, Hévin C, Rombolà AD, Ollat N (2007) Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes of Vitis. Plant Soil 290:343–355

    Article  CAS  Google Scholar 

  • Jiménez S, Pinochet J, Abadía A, Moreno MA, Gogorcena Y (2008) Tolerance response to iron chlorosis of Prunus selections as root stocks. Hortic Sci 43:304–309

    Google Scholar 

  • Jiménez S, Ollat N, Deborde C, Maucourt M, Rellán-Álvarez R, Moreno MÁ, Gogorcena Y (2011) Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis. J Plant Physiol 168:415–423

    Article  PubMed  CAS  Google Scholar 

  • Köseoglu AT, Açikgöz (1995) Determination of iron chlorosis with extractable iron analysis in peach leaves. J Plant Nutr 18:153–161

    Article  Google Scholar 

  • Krouma A, Gharsalli M, Abdelly C (2003) Differences in response to iron deficiency among some lines of common bean. J Plant Nutr 26:2295–2305

    Article  CAS  Google Scholar 

  • Larbi A, Abadia A, Abadia J, Morales F (2006) Down co-regulation of light absorption, photochemistry and carboxylation in Fe-deficient plants growing in different environments. Photosynth Res 89:113–126

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudi H, Labidi N, Ksouri R, Gharsalli M, Abdelly C (2007) Differential tolerance to iron deficiency of chickpea varieties and Fe resupply effects. C R Biol 330:237–246

    Article  PubMed  CAS  Google Scholar 

  • Malakouti MJ, Keshavarz P, Karimian N (2008) Comprehensive approach towards identical of nutrient deficiency and optimal fertilization for sustainable agriculture, 7th edn. Trbiat Modares University Pub No 102 Tehran

  • Moreau S, Meyer JM, Puppo A (1995) Uptake of iron by symbiosomes and bacteroides from soybean nodules. FEBS Lett 361:225–228

    Article  PubMed  CAS  Google Scholar 

  • O’Hara GW (2001) Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Aust J Exp Agric 41:417–433

    Article  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  PubMed  CAS  Google Scholar 

  • Römheld V, Nikolic M (2007) Iron. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. USA CRC Press, Taylor and Francis Group, Boca Raton, pp 329–350

    Google Scholar 

  • Rotaru V, Sinclair TR (2009) Interactive influence of phosphorus and iron on nitrogen fixation by soybean. Environ Exp Bot 66:94–99

    Article  CAS  Google Scholar 

  • Santi S, Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183:1072–1084

    Article  PubMed  CAS  Google Scholar 

  • Schmidt W (1994) Effects of various inhibitors on in vivo reduction by Plantago lanceolata L. roots. Plant Soil 165:207–212

    Article  CAS  Google Scholar 

  • Slatni T, Krouma A, Aydi S, Chaiffi C, Gouia H, Abdelly C (2008) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris L.) subjected to iron deficiency. Plant Soil 312:49–57

    Article  CAS  Google Scholar 

  • Slatni T, Vigani G, Ben Salah I, Kouas S, Dell’Orto M, Gouia H, Graziano Zocchi, Chedly Abdelly (2011) Metabolic changes of iron uptake in N2-fixing common bean nodules during iron deficiency. Plant Sci 181:151–158

    Article  PubMed  CAS  Google Scholar 

  • Slatni T, Dell’Orto M, Ben Salah I, Vigani G, Smaoui A, Gouia H, Zocchi G, Abdelly C (2012) Immunolocalization of H+-ATPase and IRT1 enzymes in N2-fixing common bean nodules subjected to iron deficiency. J Plant Physiol 169:242–248

    Article  PubMed  CAS  Google Scholar 

  • Tang C, Robson AD, Dilworth MJ (1991) Which stage of nodules initiation in Lupinus angustifolius L. is sensitive to iron deficiency. New Phytol 117:243–250

    Article  CAS  Google Scholar 

  • Tang C, Zheng SJ, Qiao YF, Wang GH, Han XZ (2006) Interactions between high pH and iron supply on nodulation and iron nutrition of Lupinus albus L. genotypes differing in sensitivity to iron deficiency. Plant Soil 279:153–162

    Article  CAS  Google Scholar 

  • Udvardi MK, Day D (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 48:493–523

    Article  PubMed  CAS  Google Scholar 

  • Vigani G, Maffi D, Zocchi G (2009) Iron availability affects the function of mitochondria in cucumber roots. New Phytol 182:127–136

    Article  PubMed  CAS  Google Scholar 

  • Vizzotto G, Pinton R, Bomben C, Cesco S, Varanini Z, Costa G (1999) Iron reduction in iron-stressed plants of Actinidia deliciosa genotypes: involvement of PM Fe(III)-chelate reductase and H+-ATPase activity. J Plant Nutr 22:479–488

    Article  CAS  Google Scholar 

  • Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sci 180:562–574

    Article  PubMed  CAS  Google Scholar 

  • Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z, Cesco S (2012) Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency. BMC Genomics 13:101. doi:10.1186/1471-2164-13-101

  • Zocchi G, De Nisi P, Dell’Orto M, Espen L, Marino Gallina P (2007) Iron deficiency differently affects metabolic responses in soybean roots. J Exp Bot 58:993–1000

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Tunisian Ministry of Higher Education, Scientific Research (LR10CBBC02). We are very grateful to Professor Michael A. Grusak (USDA-ARS Children’s Nutrition Research Center) for reading and editing the manuscript and for his constructive contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Slatni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slatni, T., Ben Salah, I., Kouas, S. et al. The role of nodules in the tolerance of common bean to iron deficiency. J Plant Res 127, 455–465 (2014). https://doi.org/10.1007/s10265-014-0632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-014-0632-4

Keywords

Navigation