Skip to main content

Advertisement

Log in

Proteomic analysis of tomato (Solanum lycopersicum) secretome

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

In fleshy fruits, fruit texture features are mainly related to chemical and mechanical properties of the cell wall. The description of tomato fruit cell wall proteome is a first step in the process of linking tomato genetic variability to fruit texture phenotypes. In this study, the proteome of 3 ripe tomato fruit lines with contrasted texture traits were studied. Weakly bound and soluble proteins were extracted from cell wall of the three cultivars using both destructive and non-destructive methods, respectively. Wall proteins were separated on 1D-PAGE, bands were excised and identified by LC–MS/MS. The software SignalP which searches for the leader peptide was used to discriminate between protein with or without signal peptide. In combine, seventy-five different cell wall proteins were recorded for both weakly bound and soluble cell wall fractions. The major identified functions included several proteins acting on polysaccharides, proteins involved in “lipid metabolism”, proteins having interacting domain, “oxido-reductases” and “proteases” whose putative roles in ripe fruit cell wall is discussed. Several proteins with no obvious signal peptide, however, with accumulating supportive evidences to be bona fide wall proteins, were also identified. Some variations in protein repertories were observed among the lines, demonstrating the possibility to characterize cell wall protein genetic variability by such in muro proteome analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal GK, Jwa N, Lebrun M, Job D, Rakwal R (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10:799–827

    Article  PubMed  CAS  Google Scholar 

  • Albenne C, Canut H, Boudart G, Zhang Y, San Clemente H, Pont-Lezica R, Jamet E (2009) Plant cell wall proteomics: mass spectrometry data, a trove for research on protein structure/function relationships. Mol Plant 2:977–989

    Article  PubMed  CAS  Google Scholar 

  • Andrews J, Adams SR, Burton KS, Edmondson RN (2002) Partial purification of tomato fruit peroxidase and its effect on the mechanical properties of tomato fruit skin. J Exp Bot 53:2393–2399

    Article  PubMed  CAS  Google Scholar 

  • Barbosa MS, Bao SN, Andreotti PF, de Faria FP, Felipe MSS, dos Santos FL, Mendes-Giannini MJS, de Almeida Soares CM (2006) Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect Immun 74:382–389

    Article  PubMed  CAS  Google Scholar 

  • Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL, Maule AJ (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301–311

    Article  PubMed  CAS  Google Scholar 

  • Blee KA, Wheatley ER, Bonham VA, Mitchell GP, Robertson D, Slabas AR, Burrell MM, Przemyslaw W, Bolwell GP (2001) Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesises secondary walls as determined by biochemical and morphological parameters. Planta 212:404–415

    Article  PubMed  CAS  Google Scholar 

  • Borderies G, Jamet E, Lafitte C, Rossignol M, Jauneau A, Boudart G, Monsarrat B, Esquerré-Tugayé MT, Boudet A, Pont-Lezica R (2003) Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: a critical analysis. Electrophoresis 24:3421–3432

    Article  PubMed  CAS  Google Scholar 

  • Boudart G, Jamet E, Rossignol M, Lafitte C, Borderies G, Jauneau A, Esquerre-Tugaye MT, Pont-Lezica R (2005) Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics 5:212–221

    Article  PubMed  CAS  Google Scholar 

  • Bourgault R, Bewley JD (2002) Variation in its C-terminal amino acids determines whether endo-beta-mannanase is active or inactive in ripening tomato fruits of different cultivars. Plant Physiol 130:1254–1262

    Article  PubMed  CAS  Google Scholar 

  • Brady JD, Sadler IH, Fry SC (1996) Di-isodityrosine, a novel tetrametric derivative of tyrosine in plant cell wall proteins: a new potential cross-link. Biochem J 315:323–327

    PubMed  CAS  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–339

    Article  PubMed  CAS  Google Scholar 

  • Cannon MC, Terneus K, Hall Q, Tan L, Wang Y, Wegenhart BL, Chen L, Lamport DTA, Chen Y, Kieliszewski MJ (2008) Self-assembly of the plant cell wall requires an extensin scaffold. PNAS 105:2226–2231

    Article  PubMed  CAS  Google Scholar 

  • Carpita N, Tierney M, Campbell M (2001) Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Mol Biol 47:1–5

    Article  PubMed  CAS  Google Scholar 

  • Chaib J, Devaux MF, Grotte MG, Robini K, Causse M, Lahaye M, Marty I (2007) Physiological relationships among physical, sensory, and morphological attributes of texture in tomato fruits. J Exp Bot 58:1915–1925

    Article  PubMed  CAS  Google Scholar 

  • Chen XY, Kim ST, Cho WK, Rim Y, Kim S, Kim SW, Kang KY, Park ZY, Kim JY (2009) Proteomics of weakly bound cell wall proteins in rice calli. J Plant Physiol 166:675–685

    Article  PubMed  CAS  Google Scholar 

  • Chivasa S, Ndimba BK, Simon WJ, Robertson D, Yu XL, Knox JP, Bolwell P, Slabas AR (2002) Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis 23:1754–1765

    Google Scholar 

  • Cho WK, Chen XY, Chu H, Rim Y, Kim S, Kim ST, Kim SW, Park ZY, Kim JY (2009) Proteomic analysis of the secretome of rice calli. Physiol Plant 135:331–341

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Choi YD, Lee JS (2008) Antimicrobial activity of [gamma]-thionin-like soybean SE60 in E. coli and tobacco plants. Biochem Biophys Res Commun 375:230–234

    Article  PubMed  CAS  Google Scholar 

  • Christian Scheler SL, Pan Z, Li XP, Salnikow J, Jungblut P (1998) Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Electrophoresis 19:918–927

    Article  Google Scholar 

  • Cunningham AF, Spreadbury CL (1998) Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog. J Bacteriol 180:801–808

    PubMed  CAS  Google Scholar 

  • Dahal D, Pich A, Braun H, Wydra K (2010) Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: a proteomic approach. Plant Mol Biol 73:643–658

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  PubMed  CAS  Google Scholar 

  • Farrokhi N, Burton RA, Brownfield L, Hrmova M, Wilson SM, Bacic A, Fincher GB (2006) Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnol J 4:145–167

    Article  PubMed  CAS  Google Scholar 

  • Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, Causse M (2007) Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol 143:1327–1346

    Article  PubMed  CAS  Google Scholar 

  • Feiz L, Irshad M, Pont-Lezica RF, Canut H, Jamet E (2006) Evaluation of cell wall preparations for proteomics: a new procedure for purifying cell walls from Arabidopsis hypocotyls. Plant Methods 2:10

    Article  PubMed  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell-walls of angiosperms. Annu Rev Plant Physiol Plant Mol Biol 37:165–186

    Article  CAS  Google Scholar 

  • Germain H, Chevalier T, Caron S, Matton DP (2005) Characterization of five RALF-like genes from Solanum chacoense provides support for a developmental role in plants. Planta 220:447–454

    Article  PubMed  CAS  Google Scholar 

  • Gozalbo D, Gil-Navarro I, Azorin I, Renau-Piqueras J, Martinez JP, Gil ML (1998) The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun 66:2052–2059

    PubMed  CAS  Google Scholar 

  • Greve LC, Labavitch JM (1991) Cell wall metabolism in ripening fruit: V. Analysis of cell wall synthesis in ripening tomato pericarp tissue using a d-[U-C]glucose tracer and gas chromatography–mass spectrometry. Plant Physiol 97:1456–1461

    Article  PubMed  CAS  Google Scholar 

  • Harker FR, Redgwell RJ, Hallett IC, Murray SH (1997) Texture of fresh fruit. Hortic Rev 20:121–224

    Google Scholar 

  • Haslam RP, Downie AL, Raveton M, Gallardo K, Job D, Pallett KE, John P, Parry MAJ, Coleman JOD (2003) The assessment of enriched apoplastic extracts using proteomic approaches. Ann Appl Biol 143:81–91

    Article  CAS  Google Scholar 

  • Hawes MC, Curlango-Rivera G, Wen F, White GJ, VanEtten HD, Xiong Z (2011) Extracellular DNA: the tip of root defenses? Plant Sci 180:741–745

    Article  PubMed  CAS  Google Scholar 

  • Henriquez JP, Casar JC, Fuentealba L, Carey DJ, Brandan E (2002) Extracellular matrix histone H1 binds to perlecan, is present in regenerating skeletal muscle and stimulates myoblast proliferation. J Cell Sci 115:2041–2051

    PubMed  CAS  Google Scholar 

  • Hiroaki K (2008) S I. Potential roles of histones in host defense as antimicrobial agents infectious disorders—drug targets 8:195–205

    Google Scholar 

  • Hothorn M, Van den Ende W, Lammens W, Rybin V, Scheffzek K (2010) Structural insights into the pH-controlled targeting of plant cell-wall invertase by a specific inhibitor protein. PNAS 107:17427–17432

    Article  PubMed  CAS  Google Scholar 

  • Inohara N, Nunez G (2002) ML—a conserved domain involved in innate immunity and lipid metabolism. Trends Biochem Sci 27:219–221

    Article  PubMed  CAS  Google Scholar 

  • Itai A, Ishihara K, Bewley JD (2003) Characterization of expression, and cloning, of {beta}-D-xylosidase and alpha-l-arabinofuranosidase in developing and ripening tomato (Lycopersicon esculentum Mill.) fruit. J Exp Bot 54:2615–2622

    Article  PubMed  CAS  Google Scholar 

  • Jagadeesh BH, Prabha TN, Srinivasan K (2004) Activities of glycosidases during fruit development and ripening of tomato (Lycopersicum esculentum L.): implication in fruit ripening. Plant Sci 166:1451–1459

    Article  CAS  Google Scholar 

  • Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11:33–39

    Article  PubMed  CAS  Google Scholar 

  • Jamet E, Albenne C, Boudart G, Irshad M, Canut H, Pont-Lezica R (2008) Recent advances in plant cell wall proteomics. Proteomics 8:893–908

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Ni D-A, Ruan Y-L (2009) Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21:2072–2089

    Article  PubMed  CAS  Google Scholar 

  • Kelly J, Kavanagh K (2010) Proteomic analysis of proteins released from growth-arrested Candida albicans following exposure to caspofungin. Med Mycol 48:598–605

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Triplett BA (2004) Cotton fiber germin-like protein. I. Molecular cloning and gene expression (vol 218, pg 616, 2004). Planta 219:190–190

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Saravanan RS, Damasceno CM, Yamane H, Kim BD, Rose JK (2004) Digging deeper into the plant cell wall proteome. Plant Physiol Biochem 42:979–988

    Article  PubMed  CAS  Google Scholar 

  • Li ZC, McClure JW, Hagerman AE (1989) Soluble and apoplastic activity for peroxidase, beta-d-glucosidase, malate dehydrogenase and nonspecific arylesterase in barley (Hordeum vulgare L.) and oat (Avena sativa L.) primary leaves. Plant Physiol Biochem 90:185–190

    Article  CAS  Google Scholar 

  • Lopez-Ribot J, Alloush H, Masten B, Chaffin W (1996) Evidence for presence in the cell wall of Candida albicans of a protein related to the hsp70 family. Infect Immun 64:3333–3340

    PubMed  CAS  Google Scholar 

  • Meng L, Wong JH, Feldman LJ, Lemaux PG, Buchanan BB (2010) A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc Natl Acad Sci 107:3900–3905

    Article  PubMed  CAS  Google Scholar 

  • Millar DJ, Whitelegge JP, Bindschedler LV, Rayon C, Boudet AM, Rossignol M, Borderies G, Bolwell GP (2009) The cell wall and secretory proteome of a tobacco cell line synthesising secondary wall. Proteomics 9:2355–2372

    Article  PubMed  CAS  Google Scholar 

  • Minic Z, Jamet E, San-Clemente H, Pelletier S, Renou JP, Rihouey C, Okinyo DPO, Proux C, Lerouge P, Jouanin L (2009) Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes. BMC Plant Biol 9:17

    Article  Google Scholar 

  • Monroe JD, Gough CM, Chandler LE, Loch CM, Ferrante JE, Wright PW (1999) Structure, properties, and tissue localization of apoplastic alpha-glucosidase in crucifers. Plant Physiol 119:385–398

    Article  PubMed  CAS  Google Scholar 

  • Negri AS, Prinsi B, Scienza A, Morgutti S, Cocucci M, Espen L (2008) Analysis of grape berry cell wall proteome: a comparative evaluation of extraction methods. J Plant Physiol 165:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Nieuwland J, Feron R, Huisman BAH, Fasolino A, Hilbers CW, Derksen J, Mariani C (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell 17:2009–2019

    Article  PubMed  CAS  Google Scholar 

  • Page D, Gouble B, Valot B, Bouchet J, Callot C, Kretzschmar A, Causse M, Renard C, Faurobert M (2010) Protective proteins are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage. Planta 232:483–500

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA (2001) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci USA 98:12843–12847

    Article  PubMed  CAS  Google Scholar 

  • Phan TD, Bo W, West G, Lycett GW, Tucker GA (2007) Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening. Plant Physiol 144:1960–1967

    Article  PubMed  CAS  Google Scholar 

  • Pitarch A, Sánchez M, Nombela C, Gil C (2002) Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus candida albicans cell wall proteome. Mol Cell Proteomics 1:967–982

    Article  PubMed  CAS  Google Scholar 

  • Pressey R (1997) Two isoforms of NP24: a thaumatin-like protein in tomato fruit. Phytochemistry 44:1241–1245

    Article  PubMed  CAS  Google Scholar 

  • Ranc N, Munos S, Santoni S, Causse M (2008) A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (Solanaceae). BMC Plant Biol 8:130

    Article  PubMed  Google Scholar 

  • Rose JKC, Lee SJ (2010) Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol Biochem 153:433–436

    Article  CAS  Google Scholar 

  • Rose JKC, Saladié M, Catalá C (2004) The plot thickens: new perspectives of primary cell wall modification. Curr Opin Plant Biol 7:296–301

    Article  PubMed  CAS  Google Scholar 

  • Saladie M, Rose JKC, Cosgrove DJ, Catala C (2006) Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant J 47:282–295

    Article  PubMed  CAS  Google Scholar 

  • San Clemente H, Pont-Lezica R, Jamet E (2009) Bioinformatics as a tool for assessing the quality of sub-cellular proteomic strategies and inferring functions of proteins: plant cell wall proteomics as a test case. Bioinforma Biol Insights 3:15–28

    CAS  Google Scholar 

  • Schaumburg J, Diekmann O, Hagendorff P, Bergmann S, Rohde M, Hammerschmidt S, Jänsch L, Wehland J, Kärst U (2004) The cell wall subproteome of Listeria monocytogenes. Proteomics 4:2991–3006

    Article  PubMed  CAS  Google Scholar 

  • Schroder R, Atkinson RG, Redgwell RJ (2009) Re-interpreting the role of endo-{beta}-mannanases as mannan endotransglycosylase/hydrolases in the plant cell wall. Ann Bot 104:197–204

    Article  PubMed  CAS  Google Scholar 

  • Segura A, Moreno M, Maduenõ F, Molina A, Garcia-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12:16–23

    Article  PubMed  CAS  Google Scholar 

  • Slabas AR, Ndimba B, Simon WJ, Chivasa S (2004) Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locations. Meeting on proteomics of plant proteins. Portland Press, Harpenden, pp 524–528

    Google Scholar 

  • Smith DL, Starrett DA, Gross KC (1998) A gene coding for tomato fruit beta-galactosidase II is expressed during fruit ripening. Cloning, characterization, and expression pattern. Plant Physiol 117:417–423

    Article  PubMed  CAS  Google Scholar 

  • Soares NC, Francisco R, Ricardo CP, Jackson PA (2007) Proteomics of ionically bound and soluble extracellular proteins in Medicago truncatula leaves. Proteomics 7:2070–2082

    Article  PubMed  CAS  Google Scholar 

  • Soh C-P, Ali ZM, Lazan H (2006) Characterisation of an [alpha]-galactosidase with potential relevance to ripening related texture changes. Phytochemistry 67:242–254

    Article  PubMed  CAS  Google Scholar 

  • Stotz H, Spence B, Wang Y (2009) A defensin from tomato with dual function in defense and development. Plant Mol Biol 71:131–143

    Article  PubMed  CAS  Google Scholar 

  • Tessier D, Yclon P, Jacquemin I, Larré C, Rogniaux H (2010) Ovnip: an open source application facilitating the interpretation, the validation and the edition of proteomics data generated by ms analyses and de novo sequencing. Proteomics 10:1794–1801

    Article  PubMed  CAS  Google Scholar 

  • Tjalsma H, Lambooy L, Hermans PW, Swinkels DW (2008) Shedding & shaving: disclosure of proteomic expressions on a bacterial face. Proteomics 8:1415–1428

    Article  PubMed  CAS  Google Scholar 

  • Tomassen MMM, Barrett DM, van der Valk HCPM, Woltering EJ (2007) Isolation and characterization of a tomato non-specific lipid transfer protein involved in polygalacturonase-mediated pectin degradation. J Exp Bot 58:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • van der Rest B, Boisson A-M, Gout E, Bligny R, Douce R (2002) Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase. Plant Physiol 130:244–255

    Article  PubMed  Google Scholar 

  • Vasques MT, Alves MAV, de Cerqueira JG, Luz C (2010) Immunolocalization of heat shock proteins 27 and 47 during repair of induced oral ulcers. J Oral Sci 52:623–631

    Article  PubMed  Google Scholar 

  • Vicente AR, Saladie M, Rose JKC, Labavitch JM (2007) The linkage between cell wall metabolism and fruit softening: looking to the future. J Sci Food Agric 87:1435–1448

    Article  CAS  Google Scholar 

  • Waldron KW, Parker ML, Smith AC (2003) Plant cell walls and food quality. Compr Rev Food Sci Food Saf 2:101–119

    Article  CAS  Google Scholar 

  • Wang J, Ding Y, Wang J, Hillmer S, Miao Y, Lo SW, Wang X, Robinson DG, Jiang L (2010) EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell Online 22:4009–4030

    Article  CAS  Google Scholar 

  • Watson BS, Lei Z, Dixon RA, Sumner LW (2004) Proteomics of Medicago sativa cell walls. Phytochemistry 65:1709–1720

    Article  PubMed  CAS  Google Scholar 

  • Yeats TH, Rose JKC (2008) The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Prot Sci 17:191–198

    Article  CAS  Google Scholar 

  • Yeats TH, Howe KJ, Matas AJ, Buda GJ, Thannhauser TW, Rose JKC (2010) Mining the surface proteome of tomato (Solanum lycopersicum) fruit for proteins associated with cuticle biogenesis. J Exp Bot 61:3759–3771

    Article  PubMed  CAS  Google Scholar 

  • Yin QY, de Groot PW, de Koster CG, Klis FM (2008) Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends Microbiol 16:20–26

    Article  PubMed  CAS  Google Scholar 

  • Zhu JM, Chen SX, Alvarez S, Asirvatham VS, Schachtman DP, Wu YJ, Sharp RE (2006) Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins. Plant Physiol 140:311–325

    Article  PubMed  CAS  Google Scholar 

  • Zhu JM, Alvarez S, Marsh EL, LeNoble ME, Cho IJ, Sivaguru M, Chen SX, Nguyen HT, Wu YJ, Schachtman DP, Sharp RE (2007) Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol 145:1533–1548

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from COST (Action FA0603), EU-SOL (FOOD-CT-2006-016214) ANR QUALITOM-FIL (ANR-06-PNRA009). We are very grateful to Yolande Carretero for taking care of the plants, to Esther Pelpoir, Karine Leyre and Caroline Callot for excellent technical assistance and to Stéphanie Penninck and Audrey Geairon for their help in mass spectrometry data acquisition and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emadeldin H. E. Konozy.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konozy, E.H.E., Rogniaux, H., Causse, M. et al. Proteomic analysis of tomato (Solanum lycopersicum) secretome. J Plant Res 126, 251–266 (2013). https://doi.org/10.1007/s10265-012-0516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-012-0516-4

Keywords

Navigation