Skip to main content
Log in

Complex dynamics in a discrete-time predator-prey system without Allee effect

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, complex dynamics of the discrete-time predator-prey system without Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory and checked up by numerical simulations. Chaos, in the sense of Marotto, is also proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and richer dynamics behaviors. More specifically, this paper presents the finding of period-one orbit, period-three orbits, and chaos in the sense of Marotto, complete period-doubling bifurcation and invariant circle leading to chaos with a great abundance period-windows, simultaneous occurrance of two different routes (invariant circle and inverse perioddoubling bifurcation, and period-doubling bifurcation and inverse period-doubling bifurcation) to chaos for a given bifurcation parameter, period doubling bifurcation with period-three orbits to chaos, suddenly appearing or disappearing chaos, different kind of interior crisis, nice chaotic attractors, coexisting (2,3,4) chaotic sets, non-attracting chaotic set, and so on, in the discrete-time predator-prey system. Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding is given of the discrete-time predator-prey systems with Allee effect and without Allee effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cartwright, J.H.E. Nonlinear stiffness, Lyapunov exponents, and attractor dimension. Phys. Lett. A., 264: 298–302 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Celik, C., Duman, O. Allee effect in a discrete-time predator-prey system. Chaos, Solitons and Fractal, 40: 1956–1962 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, X.W., Fu, X.L, Jing, Z.J. Dynamics in a Discrete-time Predator-prey System with Allee Effect. Acta Mathematicae Applicatae Sinica, 29: 143–164 (2012)

    MathSciNet  Google Scholar 

  4. Cheng, Z., Lin, Y., Cao, J. Dynamical behaviors of a partial-dependent predator-prey system. Chaos, Solitons and Fractals, 28: 67–75 (2006)

    Article  MathSciNet  Google Scholar 

  5. Chen, X. Periodicity in a nonlinear discrete predator-prey system with state dependent delays. Nonlinear Anal RWA., 8: 435–446 (2007)

    Article  MATH  Google Scholar 

  6. Choudhury, S.R. On bifurcations and chaos in predator-prey models with delay. Chaos, Solitons and Fractals, 2: 393–409 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, M., Agarwal, S. Periodic solutions of nonautonomous discrete predator-prey system of Lotka-Volterra type. Appl Anal., 81: 801–812 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guckenheimer, J., Holmes, P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields. New York: Springer-Verlag, 1983

    Book  MATH  Google Scholar 

  9. Jiang, G., Lu, Q. Impulsive state feedback of a predator-prey model. J. Comput. Appl. Math., 200: 193–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, G., Lu, Q., Qian, L. Complex dynamics of a Hollingtype II prey-predator system with state feedback control. Chaos, Solitons and Fractals, 31: 448–461 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jing, Z.J, Yang, J.P. Bifurcation and chaos in discrete-time predator-prey system. Chaos, Solitons and Fractals, 27: 259–277 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaplan, J.L., Yorke, J.A. Aregime observed in a fluid flow model of Lorenz. Comm. Math. Phys., 67: 93–108 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kendall, B.E. Cycles, chaos, and noise in predator-prey dynamics. Chaos, Solitons and Fractals, 12: 321–332 (2001)

    Article  MATH  Google Scholar 

  14. Liu, B., Teng, Z., Chen, L. Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy. J. Comput. Appl. Math., 193: 347–362 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, X., Xiao, D. Complex dynamic behaviors of a discrete-time predator-prey system. Chaos, Solitons and Fractals, 32: 80–94 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marotto, F.R. On redefining a snap-back repeller. Chaos, Solitons and Fractals, 25: 25–28 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marotto, F.R. Snap-back repellers imply chaos in R n. J. Math. Anal. Appl., 63: 199–223 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, W., Takeuchi, Y. Stability analysis on a predator-prey system with distributed delays. J. Comput. Appl. Math., 88: 79–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moghadas, S.M., Corbett, B.D. Limit cycles in a generalized Gause-type predator-prey model. Chaos, Solitons and Fractals, 37(5): 1343–1355 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, C., Han, M., Lin, Y., Chen, Y. Global qualitative analysis for a predator-prey system with delay. Chaos, Solitons and Fractals, 32: 1582–1596 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Teng Z, Rehim M. Persistence in nonautonomous predator-prey systems with infinite delays. J. Comput. Appl. Math., 197: 302–321 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, F., Zeng, G. Chaos in Lotka-Volterra predator-prey system with periodically impulsive ratioharvesting the prey and time delays. Chaos, Solitons and Fractals, 32: 1499–1512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, L.L, Li, W.T, Zhao, P.H. Existence and global stability of positive periodic solutions of a discrete predator-prey system with delays. Adv Differen Equat., 4: 321–336 (2004)

    MathSciNet  Google Scholar 

  24. Wiggins, S. Introduction to applied nonlinear dynamical systems and chaos. Berlin: Springer-Verlag, 1990

    Book  MATH  Google Scholar 

  25. Xiao, Y., Cheng, D., Tang, S. Dynamic complexities in predator-prey ecosystem models with age-structure for predator. Chaos, Solitons and Fractals, 14: 1403–1411 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu, R., Wang, Z. Periodic solutions of a nonautonomous predator-prey system with stage structure and time delays. J. Comput. Appl. Math., 196: 70–86 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yan, X.P, Chu, Y.D. Stability and bifurcation analysis for a delayed Lotka-Volterra predator-prey system. J. Comput. Appl. Math., 196: 198–210 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Jun Jing.

Additional information

Supported by the National Natural Science Foundation of China (No. 11071066).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Xw., Fu, Xl. & Jing, ZJ. Complex dynamics in a discrete-time predator-prey system without Allee effect. Acta Math. Appl. Sin. Engl. Ser. 29, 355–376 (2013). https://doi.org/10.1007/s10255-013-0221-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-013-0221-7

Keywords

2000 MR Subject Classification

Navigation