Skip to main content
Log in

Hypo-elastic model for lung parenchyma

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A simple, isotropic, elastic constitutive model for the spongy tissue in lung is formulated from the theory of hypo-elasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted in the literature as indicating extensional anisotropy. In contrast, we show that this behavior arises naturally from an analysis of isotropic hypo-elastic invariants and is a result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model predictions are compared with published experimental data for dog lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almansi E (1911) Sulle deformazioni finite dei solidi elastici isotropi. Rendiconti della Reale Accademia dei Lincei: Classe di scienze fisiche, matematiche e naturali 20: 705–714

    MATH  Google Scholar 

  • Bernstein B (1960) Hypo-elasticity and elasticity. Arch Ration Mech Anal 6: 90–104

    Google Scholar 

  • Bernstein B, Rajagopal KR (2008) Thermodynamics of hypoelasticity. Zeitschrift für angewandte Mathematik und Physik 59: 537–553

    Article  MathSciNet  MATH  Google Scholar 

  • Budiansky B, Kimmel E (1987) Elastic moduli of lungs. J Appl Mech 54: 351–358

    Article  MATH  Google Scholar 

  • Cauchy AL (1827) Exercices de Mathématiques, vol 2. de Bure Frères, Paris

    Google Scholar 

  • Dale PJ, Matthews FL, Schroter RC (1980) Finite element analysis of lung alveolus. J Biomech 13: 865–873

    Article  Google Scholar 

  • Denny E, Schroter RC (1995) The mechanical behavior of a mammalian lung alveolar duct model. J Biomech Eng 117: 254–261

    Article  Google Scholar 

  • Denny E, Schroter RC (2006) A model of non-uniform lung parenchyma distortion. J Biomech 39: 652–663

    Article  Google Scholar 

  • Faffe DS, Zin WA (2009) Lung parenchymal mechanics in health and disease. Physiol Rev 89: 759–775

    Article  Google Scholar 

  • Frankus A, Lee GC (1974) A theory for distortion studies of lung parenchyma based on alveolar membrane properties. J Biomech 7: 101–107

    Article  Google Scholar 

  • Fredberg JJ, Kamm RD (2006) Stress transmission in the lung: pathways from organ to molecule. Annu Rev Physiol 68: 507–541

    Article  Google Scholar 

  • Freed AD (2008) Anisotropy in hypoelastic soft-tissue mechanics, I: theory. J Mech Mater Struct 3(5): 911–928

    Article  MathSciNet  Google Scholar 

  • Freed AD (2009) Anisotropy in hypoelastic soft-tissue mechanics, II: simple extensional experiments. J Mech Mater Struct 4(6): 1005–1025

    Article  Google Scholar 

  • Freed AD (2010) Hypoelastic soft tissues part I: theory. Acta Mech 213: 189–204. doi:10.1007/s00707-009-0276-y

    Article  MATH  Google Scholar 

  • Freed AD, Einstein DR, Sacks MS (2010) Hypoelastic soft tissues, part II: in-plane biaxial experiments. Acta Mech 213: 205–222. doi:10.1007/s00707-010-0357-y

    Article  MATH  Google Scholar 

  • Fung YC (1967) Elasticity of soft tissues in simple elongation. Am J Physiol 28: 1532–1544

    Google Scholar 

  • Fung YC (1975) Stress, deformation, and atelectasis of the lung. Circ Res 37: 481–496

    Google Scholar 

  • Fung YC (1988) A model of the lung structure and its validation. J Appl Physiol 64: 2132–2141

    Google Scholar 

  • Fung YC (1990) Biomechanics: motion flow stress and growth. Springer, New York

    MATH  Google Scholar 

  • Fung YC (1996) Biomechanics: circulation, 2nd edn. Springer, New York

    Google Scholar 

  • Green G (1841) On the propagation of light in crystallized media. Trans Camb Philos Soc 7: 121–140

    Google Scholar 

  • Greenshields CJ, Weller HG (2005) A unified formulation for continuum mechanics applied to fluid-structure interaction in flexible tubes. Int J Numer Methods Eng 64: 1575–1593

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME, Spear K (1983) On the relationship between the logarithmic strain rate and the stretching tensor. Int J Solids Struct 19: 437–444

    Article  MathSciNet  MATH  Google Scholar 

  • Hajji MA (1978) Indentation of a membrane on an elastic half space. J Appl Mech 45: 320–324

    Article  Google Scholar 

  • Hencky H (1928) über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Zeitschrift für technische Physik 9: 215–220

    Google Scholar 

  • Hildebrandt J (1970) Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J Appl Physiol 28(3): 365–372

    Google Scholar 

  • Hill R (1957) On uniqueness and stability in the theory of finite elastic strain. J Mech Phys Solids 5: 229–241

    Article  MathSciNet  MATH  Google Scholar 

  • Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J Mech Phys Solids 6: 236–249

    Article  MATH  Google Scholar 

  • Hoger A (1986) The material time derivative of logarithmic strain. Int J Solids Struct 22: 1019–1032

    Article  MathSciNet  MATH  Google Scholar 

  • Hoger A (1987) The stress conjugate to logarithmic strain. Int J Solids Struct 23: 1645–1656

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  • Hoppin FG Jr, Hildebrandt J (1977) Mechanical properties of the lung. In: West JB (eds) Bioengineering aspects of the lung, lung biology in health and disease, vol 3. Marcel Dekker, New York, pp 83–162

    Google Scholar 

  • Jaumann G (1911) Geschlossenes System physikalischer und chemischer Differentialgesetze. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften: Mathematisch-naturwissenschaftliche Klasse 120: 385–530

    MATH  Google Scholar 

  • Karakaplan AD, Bieniek MP, Skalak R (1980) A mathematical model of lung parenchyma. J Biomech Eng 102: 124–136

    Article  Google Scholar 

  • Kimmel E, Budiansky B (1990) Surface tension and the dodecahedron model for lung elasticity. J Biomech Eng 112: 160–167

    Article  Google Scholar 

  • Kimmel E, Kamm RD, Shapiro AH (1987) A cellular model of lung elasticity. J Biomech Eng 109: 126–131

    Article  Google Scholar 

  • Kirchhoff G (1852) über die Gleichungen des Gleichgewichtes eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile. Sitzungsberichte der Akademie der Wissenschaften, Wien 9: 763–773

    Google Scholar 

  • Kowe R, Schroter RC, Matthews FL, Hitchings D (1986) Analysis of elastic and surface tension effects in the lung alveolus using finite element methods. J Biomech 19(7): 541–549

    Article  Google Scholar 

  • Lai-Fook SJ, Wilson TA, Hyatt RE, Rodarte JR (1976) Elastic constants of inflated lobes of dog lungs. J Appl Physiol 40(4): 508–513

    Google Scholar 

  • Lee GC, Frankus A (1975) Elasticity properties of lung parenchyma derived from experimental distortion data. Biophys J 15: 481–493

    Article  Google Scholar 

  • Leonov A (2000) On the conditions of potentiality in finite elasticity and hypo-elasticity. Int J Solids Struct 37: 2565–2576

    Article  MATH  Google Scholar 

  • Lodge AS (1964) Elastic liquids: an introductory vector treatment of finite-strain polymer rheology. Academic Press, London

    Google Scholar 

  • Lodge AS (1974) Body tensor fields in continuum mechanics: with applications to polymer rheology. Academic Press, New York

    Google Scholar 

  • Mead J (1973) Respiration: pulmonary mechanics. Annu Rev Physiol 35: 169–192

    Article  Google Scholar 

  • Mooney M (1940) A theory of large elastic deformations. J Appl Phys 11: 582–592

    Article  MATH  Google Scholar 

  • Nadeau JC, Ferrari M (1998) Invariant tensor-to-matrix mappings for evaluation of tensorial expressions. J Elast 52: 43–61

    Article  MathSciNet  MATH  Google Scholar 

  • Noll W (1955) On the continuity of the solid and fluid states. J Ration Mech Anal 4: 3–81

    MathSciNet  MATH  Google Scholar 

  • Oldroyd JG (1950) On the formulation of rheological equations of state. Proc R Soc Lond A 200: 523–541

    Article  MathSciNet  MATH  Google Scholar 

  • Oldroyd JG (1970) Equations of state of continuous matter in general relativity. Proc R Soc Lond A 316: 1–28

    Article  MathSciNet  Google Scholar 

  • Otis AB (1972) Man’s urge to model. Bulletin de Physio-Pathologie Respiratoire 8: 181–198

    Google Scholar 

  • Otis AB (1983) A perspective of respiratory mechanics. J Appl Physiol: Respir Environ Exerc Physiol 54(5): 1183–1187

    Google Scholar 

  • Otis DR Jr, Ingenito EP, Kamm RD, Johnson M (1994) Dynamic surface tension of surfactant TA: experiments and theory. J Appl Physiol 77(6): 2681–2688

    Google Scholar 

  • Piola G (1833) La meccanica dé corpi naturalmente estesi: Trattata col calcolo delle variazioni. Opuscoli Matematici e Fisici di Diversi Autori 1: 201–236

    Google Scholar 

  • Polyanin AD, Zaitsev VF (2003) Handbook of exact solutions for ordinary differential equations, 2nd edn. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Radford EP Jr (1957) Recent studies of mechanical properties of mammalian lungs. In: Remington JW (eds) Tissue elasticity, American physiological society. Waverly Press, Baltimore, pp 177–190

    Google Scholar 

  • Rajagopal KR, Srinivasa AR (2007) On the response of non-dissipative solids. Proc R Soc Lond A 463: 357–367

    Article  MathSciNet  MATH  Google Scholar 

  • Rajagopal KR, Srinivasa AR (2009) On a class of non-dissipative materials that are not hyperelastic. Proc R Soc Lond A 465: 493–500

    Article  MathSciNet  MATH  Google Scholar 

  • Rivlin RS, Saunders DW (1951) Large elastic deformations of isotropic materials vii. experiments on the deformation of rubber. Philos Trans R Soc Lond A 243: 251–288

    Article  MATH  Google Scholar 

  • Salerno FG, Ludwig MS (1999) Elastic moduli of excised constricted rat lungs. J Appl Physiol 86: 66–70

    Google Scholar 

  • Signorini A (1977) Sulle deformazioni thermoelastiche finite. In: Oseen CW, Weibull W (eds) Proceedings of the 3rd international congress for applied mechanics, vol 2. Ab. Sveriges Litografiska Tryckerier, Stockholm, pp 80–89

    Google Scholar 

  • Simo JC, Hughes TJR (1998) Computational inelasticity, interdisciplinary applied mathematics vol 7. Springer, New York

    Google Scholar 

  • Sokolnikoff IS (1964) Tensor analysis: theory and applications to geometry and mechanics of continua, Applied Mathematics Series, 2nd edn. Wiley, New York

    Google Scholar 

  • Spencer AJM (1972) Deformations in fibre-reinforced materials, Oxford science research papers. Clarendon Press, Oxford

    Google Scholar 

  • Stamenović D (1990) Micromechanical foundations of pulmonary elasticity. Physiol Rev 70(4): 1117–1134

    Google Scholar 

  • Stamenović D, Wilson TA (1985) A strain energy function for lung parenchyma. J Biomech Eng 107: 81–86

    Article  Google Scholar 

  • Stamenović D, Yager D (1988) Elastic porperties of air- and liquid-filled lung parenchyma. J Appl Physiol 65(6): 2565–2570

    Google Scholar 

  • Sugihara T, Hildebrandt J, Martin CJ (1972) Viscoelastic properties of alveolar wall. J Appl Physiol 33(1): 93–98

    Google Scholar 

  • Suki B, Bates JHT (2011) Lung tissue mechanics as an emergent phenomenon. J Appl Physiol 110: 1111–1118

    Article  Google Scholar 

  • Suki B, Ito S, Stamenović D, Lutchen KR, Ingenito EP (2005) Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J Appl Physiol 98: 1892–1899

    Article  Google Scholar 

  • Tawhai MH, Burrowes KS (2003) Developing integrative computational models of pulmonary structure. Anat Rec B New Anat 275: 207–218

    Article  Google Scholar 

  • Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  • Truesdell C (1953) The mechanical foundations of elasticity and fluid dynamics. J Ration Mech Anal 2: 593–616

    MathSciNet  MATH  Google Scholar 

  • Truesdell C (1955) Hypoelasticity. J Ration Mech Anal 4: 83–133

    MathSciNet  MATH  Google Scholar 

  • Truesdell C (1955) The simplest rate theory of pure elasticity. Commun Pure Appl Math 8: 123–132

    Article  MathSciNet  MATH  Google Scholar 

  • Truesdell C (1956) Hypo-elastic shear. J Appl Phys 27: 441–447

    Article  MathSciNet  Google Scholar 

  • Vawter DL (1980) A finite element model for macroscopic deformation of the lung. J Biomech Eng 102: 1–7

    Article  Google Scholar 

  • Wall WA, Wiechert L, Comerford A, Rausch S (2010) Towards a comprehensive computational model for the respiratory system. Int J Numer Method Biomed Eng 26: 807–827. doi:10.1002/cnm.1378

    MATH  Google Scholar 

  • Weibel ER, Gil J (1977) Structure-function relationships at the alveolar level. In: West JB (eds) Bioengineering aspects of the lung, lung biology in health and disease, vol 3. Marcel Dekker, New York, pp 1–81

    Google Scholar 

  • West JB (2007) Respiratory physiology: the essentials, 8th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Wilson TA, Bachofen H (1982) A model for mechanical structure of the alveolar duct. J Appl Physiol 52(4): 1064–1070

    Google Scholar 

  • Zaremba S (1903) Sur une forme perfectionnée de la théorie de la relaxation. Bulletin de l’Académie de Cracovie, pp 594–614

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Freed.

Additional information

The project described was supported by Award Number R01HL073598 from the National Heart, Lung, and Blood Institute. The content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Heart, Lung, and Blood Institute or the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freed, A.D., Einstein, D.R. Hypo-elastic model for lung parenchyma. Biomech Model Mechanobiol 11, 557–573 (2012). https://doi.org/10.1007/s10237-011-0333-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-011-0333-z

Keywords

Navigation