Skip to main content
Log in

On the hindered settling of sand-mud suspensions

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Hindered settling, the process by which the settling of sediment particles becomes impeded due to the proximity of other sediment particles, can be an important process for the coastal modeller, especially in highly muddy environments. It is also a significant process in other disciplines such as chemical engineering, the modelling of debris flow, the study of turbidites, piping of slurries and the understanding of processes occurring within a dredger hopper. This study first examines the hindered settling behaviour of monodisperse suspensions in order to create a framework for polydisperse hindered settling that works for both non-cohesive and cohesive suspensions. The Richardson–Zaki equation is adapted to make it compatible with the changes with viscosity that occur near the point at which suspensions become solid. The modified monodisperse settling equation is then compared to data for hindered settling of cohesive suspensions and shown to be consistent with the transition between hindered settling and the initial permeability phase of consolidation. Based on the monodisperse framework developed initially, this paper proposes a hindered settling model for sand/mud mixtures which is based on a modification of the Masliyah (1979) and Lockett and Bassoon (1979) hindered settling equation. The model is shown to reproduce the hindered settling of a variety of different sediment mixtures whilst reducing the extent of empiricism often associated with the modelling of polydisperse hindered settling of mud/sand mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al-Naafa MA, Selim MS (1989) Sedimentation of polydisperse concentrated suspensions. Can J Chem Eng 67:253–264

    Article  Google Scholar 

  • Amy, L.A., Talling, P.J., Edmonds, V.O., Sumner, E.J. and Lesueur, A. (2006). An experimental investigation of sand–mud suspension settling behaviour: implications for bimodal mud contents of submarine flow deposits

  • Baldock T, Tomkins MR, Nielsen P, Hughes MG (2004) Settling velocity of sediments at high concentrations. Coast Eng 51:91–100

    Article  Google Scholar 

  • Batchelor GK (1982) Sedimentation in a batch of dilute polydisperse system of interacting spheres, Part 1: General Theory. Journal of Fluid Mechanics 119:379–408

    Article  Google Scholar 

  • Batchelor GK, Wen CS (1982) Sedimentation in a dilute polydisperse system of interacting spheres:Part 2. Numerical results, Journal Fluid Mechanics 124:495–528

    Article  Google Scholar 

  • Baugh JV, Manning AJ (2007) An assessment of a new settling velocity parameterisation for cohesive sediment transport modelling. Cont Shelf Res. doi:10.1016/j.csr.2007.03.003

    Google Scholar 

  • Bergougnoux L, Ghicini S, Guazzelli E, Hinch J (2002) Spreading fronts and fluctuations in sedimentation. Physical Fluids 15:1875–1887

    Article  Google Scholar 

  • Berres S, Burger E, Tory EM (2005) Applications of polydisperse sedimentation models. Chem Eng J 111:105–117

    Article  Google Scholar 

  • Bürger R, García A, Karlsen KH, Towers JD (2008) A family of numerical schemes for kinematic flows with discontinuous flows. Journal of Engineering Mathematics 60(3):387–425

    Article  Google Scholar 

  • Burger R, Karlsen KH, Tory EM, Wendland WL (2002) Model equations and instability regions for the sedimentation of polydisperse suspensions of spheres. ZAMM Z Angew Math Mech 82(10):699–722

    Article  Google Scholar 

  • Camenen B (2008) Settling velocity of sediments at high concentration. In: Kusada T, Yamanishi H, Spearman J, Gailani J (eds) Sediment and Ecohydraulics, INTERCOH 2005. Elsevier, Amsterdam, pp 211–226

    Chapter  Google Scholar 

  • Camenen B, Pham Van Bang D (2011) Modelling the settling of suspended sediments for concentrations close to the gelling concentration. Cont Shelf Res 31:106–111

    Article  Google Scholar 

  • Chesher TJ, Ockenden MC (1997) Numerical modelling of mud and sand mixtures. In: Burt N, Parker R, Watts J (eds) Cohesive Sediments – Proc. of INTERCOH Conf. Wiley, (Wallingford, England), Chichester, pp 395–406

    Google Scholar 

  • Chong JS, Christiansen EB, Baer AD (1971) Rheology of concentrated suspensions. J Appl Polym Sci 15:2007–2021

    Article  Google Scholar 

  • Coulson JM, Richardson JF (1955) Chemical engineering, vol 2. Pergamon press, London

    Google Scholar 

  • Cuthbertson A, Dong P, King S, Davies P (2008) Hindered settling velocity of cohesive/noncohesive sediment mixtures. Coastal Engineering 55(12):1197–1208

    Article  Google Scholar 

  • Dankers PJT (2006) On the hindered settlling of suspensions of mud and mud-sand mixtures. Doctoral Thesis for the Technical University of Delft, Netherlands

    Google Scholar 

  • Davies R (1968) The experimental study of the differential settling of particles in suspension at high concentrations, Proceedings of the International Conference on Powder Technology, Chicago, May 20-23, 1968, Powder technology. Elsivier, Netherlands

    Google Scholar 

  • Davis RH, Gecol H (1994) Hindered settling function with no empirical parameters for polydisperse suspensions. AIChE Journal 40(3):570–575

    Article  Google Scholar 

  • Davies R, Kaye BH (1971) Experimental investigation into the settling behaviour of suspensions, Proceedings of PowTech, 71: International Powder Technology and Bulk Grabular Solids Conference, 1971

  • Dorrell R, Hogg AJ (2010) Sedimentation of bidisperse dispersion. Int J Multiphase Flow 36:481–490

    Article  Google Scholar 

  • Dorrell RM, Hogg AJ, Sumner EJ, Talling PJ (2011) The structure of the deposit produced by sedimentation of polydisperse suspensions. J Geophys Res Earth Surf 116(1):F01024

    Google Scholar 

  • Dumbser M, Enaux C, Toro EF (2008) Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J Comp Phys 227:3971–4001

    Article  Google Scholar 

  • Faas RW (1984) Time and density-dependent properties of fluid mud suspensions in NE Brazilian Continental Shelf. Geo-Mar Lett 4:147–152

    Article  Google Scholar 

  • Garside J, Al-Dibouni MR (1977) Velocity-voidage relationship for fluidization and sedimentation in solid-liquid systems. Ind. Eng. Chem., process Des Dev 16:206–214

    Article  Google Scholar 

  • Gratiot N, Manning AJ (2007) A laboratory study of dilute suspension mud floc characteristics in an oscillatory diffusive turbulent flow. J Coast Res SI 50:1142–1146

    Google Scholar 

  • Ha Z, Liu S (2002) Settling Velocities of Polydisperse Concentrated Suspensions. The Canadian Journal of Chemical Engineering 80(5):783–790

    Article  Google Scholar 

  • Harper MA, Harper JF (1967) Measurements of diatom adhesion and their relationship with movement. Br Phycological Bull 3:195–207

    Article  Google Scholar 

  • Koch DL, Shaqfeh ESG (1991) Screening in sedimenting suspensions. J Fluid Mech 224:275–230

    Article  Google Scholar 

  • Kothari AC (1981) Sedimentation of Multisized Particles, MS Thesis. Texas Technology University, Lubbock

    Google Scholar 

  • Kranck K (1984) The role of flocculation in the filtering of particulate matter in estuaries. In: Kennedy V (ed) The Estuary as a Filter. Academic Press, Orlando Inc, pp 159–175

    Chapter  Google Scholar 

  • Kranenburg C (1992) Hindered settlign and consolidation of mud - analytical results, Report number 11-92. Delft University of Technology, Netherlands

    Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspension of rigid spheres. Trans Soc Rheol 3:137–152

    Article  Google Scholar 

  • Krone RB (1963) A study of rheological properties of estuarial sediments. Report No. 63-68, Hyd. Eng. Lab. and Sanitary Eng. Lab. University of California, Berkeley, pp 63–68

    Google Scholar 

  • Leng, D.E., Katti, S.S. and Atiemo-Obeng V. (2009). Industrial mixing technology, In: L.F. Albright (ed), Albrights Chemical Engineering Handbook, CRC Press, Boca Raton, pp615–707.

  • Little C (2000) The biology of soft shores and estuaries. Oxford University Press, UK 252p

    Google Scholar 

  • Liu S (2000) Suspension flow in pipeline. Recent Res. Devel. Chemical Engg. 4:161–233

    Google Scholar 

  • Lockett MJ, Al-Habbooby HM (1974) Relative particle velocities in two-species settling. Powder technology 10:67–71

    Article  Google Scholar 

  • Lockett MJ, Bassoon KS (1979) Sedimentation of binary particle maixtures. Powder Technology 24:1–7

    Article  Google Scholar 

  • Manning AJ, Baugh JV, Spearman J, Whitehouse RJS (2010) Flocculation settling characteristics of mud:sand mixtures. Ocean Dyn 60:237–253. doi:10.1007/s10236-009-0251-0

    Article  Google Scholar 

  • Manning AJ, Baugh JV, Soulsby RL, Spearman JR, Whitehouse RJS (2011a) Cohesive sediment flocculation and the application to settling flux modelling. In: SS Ginsberg (ed) ‘Sediment Transport’, Publisher: InTech (Vienna), Chapter 5, pp. 91–116. doi:10.5772/16055

  • Manning AJ, Baugh JV, Spearman J, Pidduck EL, Whitehouse RJS (2011b) The settling dynamics of flocculating mud-sand mixtures: part 1—empirical algorithm development. Ocean Dyn 61(2–3):311–350. doi:10.1007/s10236-011-0394-7

    Article  Google Scholar 

  • Manning AJ, Whitehouse RJS, Soulsby RL (2012) Methods for predicting suspensions of mud. Technical Report, HR Wallingford Ltd http://eprints.hrwallingford.co.uk/661/1/TR104.pdf

    Google Scholar 

  • Masliyah JH (1979) Hindered settling in a multi-species particle system. Chem Eng Sci 34(1979):1166–1168

    Article  Google Scholar 

  • Maude AD and Whitmore RL (1958) A generalized theory of sedimentation. Brit J Appl Phys 9:477–482

  • Mehta, A.J., Jaeger, J.M., Valle-Levinson, A., Hayter, E.J., Wolanski, E. and Manning, A.J. (2009). Resuspension Dynamics in Lake Apopka, Florida. Final Synopsis Report, submitted to St. Johns River Water Management District, Palatka, Florida, June 2009, Report No. UFL/COEL-2009/00, 158p

  • Merckelbach LM and Kranenburg C (2004) New constitutive equations for soft mud-sand mixtures. Géotechnique 54(4):235–243

  • Merckelbach L (2000) Consolidation and strength evolution of soft mud layers, Communications on Hydraulic and Geotechnical Engineering, PhD thesis for Delft University of Technology. Geotechnical Engineering, report 00-2, Delft University of Technology

  • Mirza S, Richardson JF (1979) Sedimentation of suspensions of particles of two or more sizes. Chemical Engineering Science 34(4):447–454

    Article  Google Scholar 

  • Mucha PJ, Brenner MP (2003) Diffusivities and front propagation in sedimentation. Phys Fluids 15(5):1305–1313

    Article  Google Scholar 

  • Nguyen QD (2008) Etude expérimentale et numérique du début de consolidation de sols de très forte teneur en eau. PhD. thesis. Université de Nantes, France In French

    Google Scholar 

  • Nguyen NQ, Ladd AJC (2005) Sedimentation of hard-sphere suspensions at low Reynolds number. J Fluid Mech 525:73–104

    Article  Google Scholar 

  • Paterson, D.M. and Hagerthey, S.E. (2001). Microphytobenthos in contrasting coastal ecosystems: Biology and dynamics. In: Ecological comparisons of sedimentary shores (K. Reise, Ed.), Ecological studies, pp. 105–125

  • Quemada D (1977) Rheology of concentrated disperse systems and minimum energy dissipation principle. Rheol Acta 16:82–94

    Article  Google Scholar 

  • Richardson JF, Zaki WN (1954) Sedimentation and fluidization: part I. Trans Instn Chem Engrs 32:35–53

    Google Scholar 

  • Ross MA (1988) Vertical structure of estuarine fine sediment suspensions. Ph.D. thesis. University of Florida, Gainesville

    Google Scholar 

  • Rowe PN (1987) A convenient empirical equation for estimation of the Richardson-Zaki exponent. Chem.Eng.Sci. 43:2795–2796

    Article  Google Scholar 

  • Schiller, L. and Naumann, A. (1933). Uber die grundlegenden Berechnungen bei der Schwerkrauftbereitung, Z.,VDI, volume 77. (In German)

  • Siwiec T (2007) The experimental verification of Richardson-Zaki law on example of selected beds used in water treatment. J Polish Agric Univ 10(2):5

    Google Scholar 

  • Smith SJ, Freidrichs CT (2011) Size and settling velocities of cohesive flocs and suspended sediment aggregates in a trailing suction hopper dredge plume. Cont Shelf Res 31:S50–S63

    Article  Google Scholar 

  • Soulsby RL (1997) Dynamics of marine sands. Thomas Telford Publications, London

    Google Scholar 

  • Soulsby RL, Manning AJ, Spearman J, Whitehouse RJS (2013) Settling velocity and mass settling flux of flocculated estuarine sediments. Mar Geol. doi:10.1016/j.margeo.2013.04.006

    Google Scholar 

  • Spearman J, Manning AJ, Whitehouse RJS (2011) The settling dynamics of flocculating mud-sand mixtures: part 2—numerical modelling. Ocean Dyn 60(2):237–253

    Google Scholar 

  • Te Slaa S, He Q, van Maren DS, Winterwerp JC (2013) Sediment processes in silt rich sediment systems. Ocean Dyn 63:399–421

    Article  Google Scholar 

  • Tolhurst TJ, Gust G, Paterson DM (2002) The influence on an extra-cellular polymeric substance (EPS) on cohesive sediment stability. In: Winterwerp JC, Kranenburg C (eds) Fine sediment dynamics in the marine environment - proceedings in marine science 5. Elsevier, Amsterdam, pp 409–425

    Chapter  Google Scholar 

  • Toorman E (1996) Sedimentation and self-weight consolidation: general unifying theory. Géotechnique 46(1):103–113

    Article  Google Scholar 

  • Toorman E (1997) Modelling the thixotropic behaviour of dense cohesive sediment suspensions. Rheol Acta 36:56–65

    Article  Google Scholar 

  • Toorman EA (1999) Sedimentation and self-weight consolidation: constitutive equations and numerical modelling. Geotechnique 49(6):709–726

    Article  Google Scholar 

  • Van LA, Pham Van Bang D (2013) Hindered settling of sand/mud flocs mixtures: from model formulation to numerical validation. Adv Water Resour 53:1–11

    Article  Google Scholar 

  • van Ledden M (2002) A process-based sand-mud model. In: Winterwerp JC, Kranenburg C (eds) Fine Sediment Dynamics in the Marine Environment - Proc. in Mar. Science 5. Elsevier, Amsterdam, pp 577–594

    Chapter  Google Scholar 

  • van Olphen H (1977) An introduction to clay colloid chemistry, 2nd edn. Wiley, London 318 p

    Google Scholar 

  • Van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, Amsterdam

    Google Scholar 

  • van Rijn LC (2007) Unified view of sediment transport by currents and waves. II: Suspended Transport, Journal of Hydraulic Engineering 133(6):668–689

    Google Scholar 

  • Waeles B, Le Hir P, Lesueur P (2008) A 3D morphodynamic process-based modelling of a mixed sand/mud coastal environment : the seine estuary, France. In: Kudusa T, Yamanishi H, Spearman J, Galiani JZ (eds) Sediment and Ecohydraulics - Proc. in Marine Science 9. Elsevier, Amsterdam, pp 477–498

    Google Scholar 

  • HR Wallingford (1990) Fluid mud in estuaries, Field measurements, HR Wallingford Report EX2076, January 1990

  • Wang, Z.Y., Larsen, P. and Xiang, W. (1994). Rheological properties of sediment suspensions and their implications, Journal of Hydraulic Research, IAHR,495–516

  • Wang Z, Nestmann F, Dittrich A (1995) Fall velocity of sediment in clay suspensions, Procedings of the Sixth International Syposium on River sedimentation. Central Board of Irrigation and Power, New Delhi published by A.A. Balkema

    Google Scholar 

  • Whitehouse RJS, Soulsby RL, Roberts W, Mitchener HJ (2000) Dynamics of estuarine muds. Thomas Telford, London, 210 pp

    Book  Google Scholar 

  • Winterwerp JC (1999) On the dynamics of high-concentrated mud suspensions. Ph.D. Thesis. Delft University of Technology, Faculty of Civil Engineering and Geosciences, The Netherlands 172 p

    Google Scholar 

  • Winterwerp JC (2002) On the flocculation and settling velocity of estuarine mud. Cont Shelf Res 22(9):1339–1360

    Article  Google Scholar 

  • Winterwerp JC, Van Kesteren WGM (2004) Introduction to the physics of cohesive sediment dynamics in the marine environment. In: van Loon T (ed) Developments in sedimentology, 56. Elsevier, Amsterdam, 466p

    Google Scholar 

  • Winterwerp JC, Manning AJ, Martens C, de Mulder T, Vanlede J (2006) A heuristic formula for turbulence-induced flocculation of cohesive sediment. Estuar Coast Shelf Sci 68:195–207

    Article  Google Scholar 

  • Wu W, Wang SY (2006) Formulas for sediment porosity and settling velocity. J Hydrual Eng 132(8):858–862

    Article  Google Scholar 

  • Yin X, Koch DL (2008) Velocity fluctuations and hydrodynamic diffusion in finite-Reynolds-number sedimenting suspensions. Phys Fluids 20:043305

    Article  Google Scholar 

Download references

Acknowledgements

Professor Manning’s contribution to this manuscript was partly funded by HR Wallingford Company Research project ‘FineScale - Dynamics of Fine-grained Cohesive Sediments at Varying Spatial and Temporal Scales’ (DDY0523).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Spearman.

Additional information

Responsible Editor: Erik A Toorman

This article is part of the Topical Collection on the 13th International Conference on Cohesive Sediment Transport in Leuven, Belgium 7-11 September 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spearman, J., Manning, A.J. On the hindered settling of sand-mud suspensions. Ocean Dynamics 67, 465–483 (2017). https://doi.org/10.1007/s10236-017-1034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-017-1034-7

Keywords

Navigation