Skip to main content
Log in

An alternative direct method towards mean dynamic topography computations

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

An alternative “direct method” to “mean dynamic topography” (MDT) computations using satellite altimetry-derived “mean sea surface” (MSS) and “global geopotential model” (GGM), without direct application of the geoid, is devised. The developed approach, which is based on derivation of an equipotential surface of the gravity field of the Earth that fits to global MSS in least squares sense, is formulated via a constrained optimization problem. The validity of our method is numerically tested by computing a global MDT model based on DNSC08 MSS model and EGM2008 GGM as input data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen OB, Knudsen P (2009) DNSC08 Mean Sea Surface and Mean Dynamic Topography models. J Geophys Res 114: C11001. doi:10.1029/2008JC005179

  • Ardalan AA (2000) High-resolution regional geoid computation in the World Geodetic Datum 2000 based upon collection of linearized observational of the type GPS, gravity potential and gravity intensity. PhD thesis, Department of Geodesy and GeoInformatics, Stuttgart University, Stuttgart. Available at http://elid.uni-stuttgart.de/opus/volltexte/2000/665/pdf/PhDonline.pdf

  • Barzaghi R, Tselfes N, Tziavos IN, Vergos GS (2009) Geoid and high resolution sea surface topography modeling in the Mediterranean from gravimetry, altimetry and GOCE data: evaluation by simulation. J Geodesy 83:751–772

    Article  Google Scholar 

  • Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming: theory and algorithms, 3rd edn. Wiley, New York

    Google Scholar 

  • Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific, Nashua

    Google Scholar 

  • Bingham R, Haines K, Hughes C (2007) Elementary algorithms for determining the ocean dynamic topography from altimetric and gravity data. European Space Agency (Special Publication) ESA SP, SP-627:269–276

  • Birol F, Brankart JM, Castruccio F, Brasseur P, Verron J (2004) Impact of ocean mean dynamic topography on satellite data assimilation. Mar Geodesy 27:59–78

    Article  Google Scholar 

  • Blinken R, Koch AR (2001) Geoid and sea surface topography derived from ERS-1 altimeter data the adjoint method. Stud Geophys Geod 45:235–250

    Article  Google Scholar 

  • Burša M, Kouba J, Radej KA, True S, Vatrt V, Vojtiskova M (1999a) Temporal variations in sea surface topography and dynamics of the Earth’s inertia ellipsoid. Stud Geophys Geod 43:7–19

    Article  Google Scholar 

  • Burša M, Kouba J, Muller A, Radej KA, True S, Vatrt V, Vojtiskova M (1999b) Differences between mean sea levels for the Pacific, Atlantic and Indian Oceans from TOPEX/POSEIDON altimetry. Stud Geophys Geod 43:1–6

    Article  Google Scholar 

  • Castruccio F, Verron J, Gourdeau L, Brankart JM, Brasseur P (2008) Joint altimetric and in-situ data assimilation using the GRACE mean dynamic topography: a 1993–1998 hindcast experiment in the Tropical Pacific Ocean. Ocean Dynamics 58:43–63

    Article  Google Scholar 

  • Dobricic S (2005) New mean dynamic topography of the Mediterranean calculated from assimilation system diagnostics. Geophys Res Lett 32:L11606. doi:10.1029/2005GL022518

    Article  Google Scholar 

  • Ekman M, Mäkinen J (1996) Mean sea surface topography in the Baltic Sea and its transition area to the North Sea: a geodetic solution and comparisons with oceanographic models. J Geophys Res 101(C5):11,993–11,999

    Article  Google Scholar 

  • Engelis T (1987) Spherical harmonic expansion of the Levitus Sea Surface Topography. Report No. 385, The Ohio State University, Research Foundation

  • Fenoglio L, Kusche J, Becker M (2007) Estimation of mass variation and mean dynamic topography in the Mediterranean Sea from altimetry and GRACE/GOCE GEOID. European Space Agency (Special Publication) ESA SP, SP-627:57–61

  • Fletcher R (2000) Practical methods of optimization, 2nd edn. Wiley, New York

    Google Scholar 

  • Foreman MGG, Crawford WR, Cherniawsky JY, Galbraith J (2008) Dynamic ocean topography for the northeast Pacific and its continental margins. Geophys Res Lett 35:L22606. doi:10.1029/2008GL035152

    Article  Google Scholar 

  • Forsberg R, Skourup H, Andersen O, Laxon S, Ridout A, Braun A, Johannessen J, Siegismund F, Tscherning CC, Knudsen P (2007) Combination of spaceborne, airborne and surface gravity in support of arctic ocean sea-ice and MDT mapping. European Space Agency (Special Publication) ESA SP, SP-627:21–26

  • Gauss CF (1828) Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona. Vandenhoek und Ruprecht, Göttingen

  • Glenn SM, Porter DL, Robinson AR (1991) A synthetic geoid validation of Geosat mesoscale dynamic topography in the Gulf Stream region. J Geophys Res 96:7145–7166

    Article  Google Scholar 

  • Gourdeau L, Lemoine JM, Rio MH, Hernandez F (2003) Estimating mean dynamic topography in the Pacific Ocean from gravity and altimetry satellites. Geophys Res Lett 30:1–5

    Article  Google Scholar 

  • Heiskanen WA, Mortiz H (1967) Physical geodesy. Institute of Physical Geodesy, Technical University of Graz, Austria, W.H. Freeman

  • Hernandez F, Schaeffer P, Rio MH, Tamagnan D, LeTraon GPY (2001) Mean Dynamic Topography for satellite altimetry: two approaches, from oceanographic data or satellite gravimetry. Journees luxembourgeoises de geodynamique. Session Nº89, Munsbach, Luxembourg (12/11/2001), pp. 19–25

  • Horne RA, Johnson CR (1990) Matrix analysis. Cambridge University Press, Cambridge. ISBN 0521386322, 9780521386326, p 561

  • Hunegnaw A, Hipkin RG, Edwards J (2009) A method of error adjustment for marine gravity with application to Mean Dynamic Topography in the northern North Atlantic. J Geodesy 83:161–174

    Article  Google Scholar 

  • Hwang C (1995) Orthonormal function approach for Geosat determination of sea surface topography. Mar Geodesy 18:245–271

    Article  Google Scholar 

  • Ichikawa K, Imawaki S (1996) Estimating the sea surface dynamic topography from Geosat altimetry data. J Oceanogr 52:43–68

    Article  Google Scholar 

  • Ichikawa K, Imawaki S, Ishii H (1995) Comparison of surface velocities determined from altimeter and drifting buoy data. J Oceanogr 51:729–740

    Article  Google Scholar 

  • Jekeli C (1988) The exact transformation between ellipsoidal and spherical expansions. Manuscr Geod 13:106–113

    Google Scholar 

  • LeGrand P, Schrama EJO, Tournadre J (2003) An inverse estimate of the dynamic topography of the ocean. Geophys Res Lett 30(2):1062. doi:10.1029/2002GL014917

    Article  Google Scholar 

  • LeProvost C, Bermond M (2003) Resolution needed for an adequate determination of the mean ocean circulation from altimetry and an improved geoid. Space Sci Rev 108:163–178

    Article  Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAA Professional Paper 13, Rockville, MD: U.S. Dept. of Commerce

  • Levitus S, Boyer TP (1994) World Ocean Atlas 1994 volume 4: Temperature NOAA Atlas NESDIS 4, 117 pp. National Ocean and Atmosphere Administration USA

  • Levitus S, Burgett R, Boyer TP (1994) World Ocean Atlas 1994 volume 3: Salinity NOAA Atlas NESDIS 3, 99 pp. National Ocean and Atmosphere Administration USA

  • Listing JB (1873) Über unsere jetzige Kenntnis der Gestalt und Größe der Erde. Dietrichsche Verlagsbuchhandlung, Göttingen

    Google Scholar 

  • Marsh JG, Koblinsky CJ, Lerch F, Klosko SM, Robbins JW, Williamson RG, Patel BG (1990) Dynamic sea surface topography, gravity, and improved orbit accuracies from the direct evaluation of Seasat altimeter data. J Geophys Res 95:129–142

    Google Scholar 

  • Mitchell JL, Dastugue JM, Teague WJ, Hallock ZR (1990) The estimation of geoid profiles in the Northwest Atlantic from simultaneous satellite altimetry and airborne expendable bathythermograph sections. J Geophys Res 95:17965–17977

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth gravitational model to degree 2160: EGM2008. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18, 2008

  • Qiu B, Kelly KA, Joyce TM (1991) Mean flow and variability of the Kuroshio extension from Geosat altimetry data. J Geophys Res 96:18491–18507

    Article  Google Scholar 

  • Rao SS (1996) Engineering optimization: theory and practice. 3rd edition, ISBN 0471550345, 9780471550341, Wiley-IEEE, New Jersey

  • Rapp RH (1998) The development of a degree 360 expansion of the dynamic ocean topography of the POCM 4B global circulation model. Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, Ohio

  • Rapp RH, Zhang C, Yi Y (1996) Analysis of dynamic ocean topography using TOPEX data and orthonormal functions. J Geophys Res 101:583–605

    Article  Google Scholar 

  • Rio MH, Hernandez F (2004) A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J Geophys Res 109:C12032. doi:10.1029/2003JC002226

    Article  Google Scholar 

  • Rio MH, Schaeffer P, Hernandez F, Lemoine JM (2005) The estimation of the ocean Mean Dynamic Topography through the combination of altimetric data, in-situ measurements and GRACE geoid: from global to regional studies. Proceedings of the GOCINA International Workshop, Luxembourg

  • Rio MH, Schaeffer P, Lemoine JM, Larnicol G, Hernandez F (2007) Use of oceanographic in-situ measurements and altimetry to assess the accuracy of present (GRACE) and future (GOCE) geoid models. Impact for the estimation of the ocean mean dynamic topography. European Space Agency (Special Publication) ESA SP, SP-627:57–61

  • Semtner AJ, Chervin RM (1992) Ocean general circulation from a global eddy-resolving model. J Geophys Res 97:5493–5550

    Article  Google Scholar 

  • Skachko S, Danilov S, Janjic T, Schroter J, Sidorenko D, Savcenko R, Bosch W (2008) Sequential assimilation of multi-mission dynamical topography into a global finite-element ocean model. Ocean Science 4:307–318

    Article  Google Scholar 

  • Smith RD, Maltrud ME, Bryan FO, Hecht MW (2000) Numerical simulation of the North Atlantic Ocean at 1/10º. J Phys Oceanogr 30:1532–1561

    Article  Google Scholar 

  • Stammer D, Tokmakian RT, Semtner A, Wunsch C (1996) How well does a 1/4° global circulation model simulate the large-scale oceanic observations? J Geophys Res 101:25779–25881

    Article  Google Scholar 

  • Uchida H, Imawaki S, Hu J-H (1998) Comparison of Kuroshio surface velocities derived from satellite altimetry and drifting buoy data. J Oceanogr 54:115–122

    Article  Google Scholar 

  • Vianna ML, Menezes VV, Chambers DP (2007) A high resolution satellite-only GRACE-based mean dynamic topography of the South Atlantic Ocean. Geophys Res Lett 34:L24604. doi:10.1029/2007GL031912

    Article  Google Scholar 

  • Vossepoel FC (2007) Uncertainties in the mean ocean dynamic topography before the launch of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). J Geophys Res 112:C05010. doi:10.1029/2006JC003891

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of Tehran for support of this work via research grant No. 8151007.1.02. The authors would like also to thank the anonymous reviewers for their constructive comments and corrections which helped to improve the initial version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza A. Ardalan.

Additional information

Responsible Editor: Richard John Greatbatch

Appendices

Appendix 1

1.1 (Ellipsoidal harmonic expansion of gravity potential field of the Earth in terms of Jacobi ellipsoidal coordinates {β, λ, η})

Gravity potential field of the Earth as the additive summation of the gravitational potential U(β, λ, η) and the centrifugal potential V(β, η) can be written as follows:

$$ W\left( {\beta, \lambda, \eta } \right) = U\left( {\beta, \lambda, \eta } \right) + V\left( {\beta, \eta } \right) $$
(19)

Where the ellipsoidal harmonic expansion of the gravitational field of the Earth U(β, λ, η) as the solution of ellipsoidal Dirichlet boundary value problem in terms of Jacobi ellipsoidal coordinates {β, λ, η} reads as follows (see Ardalan 2000 for details):

$$ U\left( {\beta, \lambda, \eta } \right) = \sum\limits_{n = 0}^{{n_{\max }}} {\sum\limits_{m = - n}^n {{u_{nm}}\frac{{Q_{n\left| m \right|}^*\left( {\sinh \eta } \right)}}{{Q_{n\left| m \right|}^*\left( {\sinh {\eta_0}} \right)}}{e_{nm}}\left( {\beta, \lambda } \right)} } $$
(20)

The Jacobi ellipsoidal coordinates {β, λ, η} are related to the Cartesian coordinates {x, y, z} as follows (see Ardalan 2000 for more details):

$$ \left\{ \begin{gathered} x = \varepsilon \cosh \eta \cos \beta \cos \lambda \hfill \\y = \varepsilon \cosh \eta \cos \beta \sin \lambda \hfill \\z = \varepsilon \sinh \eta \sin \beta \hfill \\\end{gathered} \right. $$
(A21)

In Eq. 20, u nm are the normalized ellipsoidal harmonic coefficients, and \( {\eta_0} = {\cosh^{ - 1}}\left( {{a \mathord{\left/{\vphantom {a {\sqrt {{{a^2} - {b^2}}} }}} \right.} {\sqrt {{{a^2} - {b^2}}} }}} \right) \) specifies the surface of the reference ellipsoid. In Eq. 20 \( Q_{n\left| m \right|}^*\left( {\sinh \eta } \right) \) are fully normalized associated Legendre functions of the second kind and e nm (β, λ) are surface ellipsoidal harmonics with the following definition.

$$ {e_{nm}}\left( {\beta, \lambda } \right) = \left\{ \begin{gathered} P_{n\left| m \right|}^*\left( {\sin \beta } \right)\cos m\lambda \,\,\,\,\,\,\,\,\,\,m \geqslant 0 \hfill \\P_{n\left| m \right|}^*\left( {\sin \beta } \right)\sin \left| m \right|\lambda \,\,\,\,\,\,\,\,\,\,m < 0 \hfill \\\end{gathered} \right. $$
(22)

where the fully normalized \( P_{n\left| m \right|}^* \) associated Legendre functions of the first kind appearing in Eq. 22 are related to associated Legendre functions of first kind \( {P_{n\left| m \right|}} \) as follows:

$$ \left\{ \begin{gathered} P_{n\left| m \right|}^*\left( {\sin \beta } \right) = \sqrt {{2n + 1}} {P_{n\left| m \right|}}\left( {\sin \beta } \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,m = 0 \hfill \\P_{n\left| m \right|}^*\left( {\sin \beta } \right) = \sqrt {{2\left( {2n + 1} \right)\frac{{\left( {n - m} \right)!}}{{\left( {n + m} \right)!}}}} {P_{n\left| m \right|}}\left( {\sin \beta } \right)\,\,\,\,\,\,\,\,\,\,m \ne 0 \hfill \\\end{gathered} \right. $$
(23)

The centrifugal potential in terms of Jacobi ellipsoidal coordinates can be presented as:

$$ V\left( {\beta, \eta } \right) = \frac{1}{2}{\omega^2}{\varepsilon^2}{\hbox{co}}{{\hbox{s}}^2}\beta { \cos }{{\hbox{h}}^2}\eta $$
(24)

where ω is the angular velocity of the Earth and \( \varepsilon = \sqrt {{{a^2} - {b^2}}} \) is the linear eccentricity.

Appendix 2

2.1 (Computation of the coefficient matrix A defined by Eq. 9)

For calculation of ∂W/∂H we have:

$$ \frac{{\partial W}}{{\partial H}} = \frac{{\partial W}}{{\partial \beta }}\frac{{\partial \beta }}{{\partial H}} + \frac{{\partial W}}{{\partial \lambda }}\frac{{\partial \lambda }}{{\partial H}} + \frac{{\partial W}}{{\partial \eta }}\frac{{\partial \eta }}{{\partial H}} $$
(25)

Since P and \( P\prime \) in Fig. 1 are along normal to surface of reference ellipsoid, therefore (see Ardalan 2000 for details):

$$ \frac{{\partial \lambda }}{{\partial H}} = 0,\,\,\,\frac{{\partial \beta }}{{\partial H}} \doteq 0 $$
(26)

Therefore, Eq. 25 can be written as follows:

$$ \frac{{\partial W}}{{\partial H}} \doteq \frac{{\partial W}}{{\partial \eta }}\frac{{\partial \eta }}{{\partial H}} $$
(27)

where

$$ \frac{{\partial \eta }}{{\partial H}} = \frac{{\partial \eta }}{{\partial x}}\frac{{\partial x}}{{\partial H}} + \frac{{\partial \eta }}{{\partial y}}\frac{{\partial y}}{{\partial H}} + \frac{{\partial \eta }}{{\partial z}}\frac{{\partial z}}{{\partial H}} $$
(28)

where η is the Jacobi ellipsoidal coordinate which is related to the Cartesian coordinates {x, y, z} as follows (see Ardalan 2000 for more details):

$$ \eta = {\hbox{arccosh}}{\left[ {\frac{1}{{2{\varepsilon^2}}}\left( {{x^2} + {y^2} + {z^2} + {\varepsilon^2} + \sqrt {{{{\left( {{x^2} + {y^2} + {z^2} + {\varepsilon^2}} \right)}^2} - 4{\varepsilon^2}\left( {{x^2} + {y^2}} \right)}} } \right)} \right]^{\frac{1}{2}}} $$
(29)

and

$$ \begin{gathered} x = \left( {N + h - H} \right)\cos \varphi \cos \lambda \Rightarrow \frac{{\partial x}}{{\partial H}} = - \cos \varphi \cos \lambda \hfill \\y = \left( {N + h - H} \right)\cos \varphi \sin \lambda \Rightarrow \frac{{\partial y}}{{\partial H}} = - \cos \varphi \sin \lambda \hfill \\z = \left( {N\left( {1 - {e^2}} \right) + h - H} \right)\sin \varphi \Rightarrow \frac{{\partial z}}{{\partial H}} = - \sin \varphi \hfill \\\end{gathered} $$
(30)

where

$$ {e^2} = \frac{{{a^2} - {b^2}}}{{{a^2}}},\,\,\,N = \frac{a}{{\sqrt {{1 - {e^2}{{\sin }^2}\varphi }} }} $$
(31)

In Eq. 31, a is semi-major and b is semi-minor axis of the reference ellipsoid. The derivatives ∂η/∂x, ∂η/∂y, and ∂η/∂z can be readily derived by symbolic operation within, for example, “MATLAB”, “MAPLE”, or “MATHEMATICA” software. For the computation of ∂W/∂η, we refer to Ardalan (2000).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karimi, R., Ardalan, A.A. An alternative direct method towards mean dynamic topography computations. Ocean Dynamics 60, 555–562 (2010). https://doi.org/10.1007/s10236-010-0275-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0275-5

Keywords

Navigation