Skip to main content
Log in

Trace Element Scavenging in Dry Wash Surficial Sediments in an Arid Region of Southern Nevada, USA

Transport von Spurenelementen aus ausgetrockneten Oberflächensedimenten in einer ariden Region in Südnevada, USA

Relevamiento de elementos traza en sedimentos de un cauce seco superficial en una región árida en el sur de Nevada, USA

微量元素在美国内华达州南部干旱区沙漠沟壑浅表沉积层中的迁移

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Sediment samples were collected from a dry wash in Nelson, Nevada where the Techatticup Mine and Mill operated between 1850 and 1960. Samples were used to evaluate movement and behavior of certain metals and metalloids including aluminum, arsenic, barium, cadmium, copper, iron, manganese, lead, and vanadium. The data show that some metals and metalloids are more concentrated on larger particles whereas others show the opposite tendency. For example, As was greatest on silt fractions and least on coarse fractions, while Se was detected only on silts. Chromium, Cu, Fe, Mn, Pb, and Zn concentrations all increased with decreasing particle size (silt > sand > coarse), whereas Al, Ba, and V showed the opposite trend (silt < sands < coarse).

Zusammenfassung

Aus einem ausgetrockneten Flussbett in Nelson (Nevada) wurden Sedimentproben entnommen. In diesem Gebiet wurde zwischen 1850 und 1960 die Techatticup Grube betrieben. An den Proben wurden der Transport und das Verhalten von verschiedenen Metallen und Metalloiden, wie Aluminium, Arsen, Barium, Cadmium, Kupfer, Eisen, Mangan, Blei und Vanadium untersucht. Die Ergebnisse zeigen, dass einige Metalle und Metalloide an größeren Partikel akkumuliert sind, wohingegen andere einen entgegengesetzten Trend zeigen. Beispielsweise war As in der Schlufffraktion konzentriert und in der Kiesfraktion abgereichert. Selen wurde nur in der Schlufffraktion nachgewiesen. Die Konzentration von Cr, Cu, Fe, Mn, Pb, und Zn stieg mit abnehmender Korngröße (Schluff > Sand > Kies), wohingegen Al, Ba und V einen entgegengesetzten Trend zeigten (Schluff < Sand < Kies).

Resumen

Muestras de sedimentos fueron colectadas en un cauce seco en Nelson, Nevada donde las minas Techatticup y Mill operaron entre 1850 y 1960. Las muestras fueron usadas para evaluar el movimiento y el comportamiento de ciertos metales y metaloides incluyendo aluminio, arsénico, bario, cadmio, cobre, hierro, manganeso, plomo y vanadio. Los datos muestran que algunos metales y metaloides están más concentrados en las partículas más grandes mientras que otros muestran la tendencia opuesta. Por ejemplo, As fue el mayor en las fracciones de limo y menos en fracciones gruesas, mientras que Se fue detectado solo en limos. Las concentraciones de Cr, Cu, Fe, Mn, Pb y Zn se incrementaron a medida que decrecía el tamaño de partícula (limo > arenas > grueso) mientras que Al, Ba y V mostraron la tendencia opuesta (limo < arenas < grueso).

抽象的

沉积物样品取自美国内华达州纳尔逊(Nelson, Nevada)的沙漠沟壑,区域内已废弃Techatticup矿的生产运行时间为1850 ~ 1960年。样品用于分析铝、砷、钡、镉、铜、铁、锰、铅、钒等金属和类金属的迁移特征。研究数据显示,一些金属和类金属元素更易富集于大颗粒沉积,而另一些元素易富集于小颗粒沉积。例如,砷在粉粒沉积中最多而在粗粒沉积中最少,硒几乎只能在粉粒沉积中才有检出。铬、铜、铁、锰、铅和锌浓度都随沉积颗粒粒径减小而增加(粉粒 > 砂粒 > 粗粒),而铝、钡和钒浓度随沉积颗粒粒径减小而减小(粉粒 < 砂粒 < 粗粒).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson RE (1971) Thin-skinned distension in Tertiary rocks of southeastern Nevada. Geol Soc Am Bull 82:43–58

    Article  Google Scholar 

  • Anderson RE, Longwell CR, Armstrong RL, Marvin RF (1972) Significance of K-Ar ages of Tertiary rocks from the Lake Mead region, Nevada-Arizona. Geol Soc Am Bull 83(2):273–288

    Article  Google Scholar 

  • Bell JW, Smith EI (1980) Geologic map of the Henderson Quadrangle. Map No. 67, Nevada Bureau of Mines and Geology, Reno

  • Bowell RJ (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9(3):279–286

    Article  Google Scholar 

  • Bureau of Reclamation (BOR) (1995) Preliminary assessments—Henderson lead site, Clark County, Nevada. EPA ID No. NV5141190608, BOR Boulder City, NV, USA

  • Camm GS, Butcher AR, Pirrie D, Hughes PK, Glass HJ (2003) Secondary mineral phase associated with a historic arsenic calciner identified using automated scanning electron microscopy; a pilot study from Cornwall, UK. Miner Eng 16(11):1269–1277

    Article  Google Scholar 

  • Camm GS, Glass HJ, Bryce DW, Butcher AR (2004) Characterization of a mining-related arsenic-contaminated site, Cornwall, UK. J Geochem Explor 82(1–3):1–15

    Article  Google Scholar 

  • Chaffee MA, Berry KH (2006) Abundance and distribution of selected elements in soils, stream sediments, and selected forage plants from desert tortoise habitats in the Mojave and Colorado deserts, USA. J Arid Environ 67:35–87

    Article  Google Scholar 

  • Chopin EIB, Alloway BJ (2007) Trace element partitioning and soil particle characterization around mining and smelting areas at Tharsis, Ríotinto and Huelva, SW Spain. Sci Total Environ 373:488–500

    Article  Google Scholar 

  • Darvall P (1991) Normal faulting in the Eldorado Mountains, southeastern Nevada. Geol Soc Am Abstr 23(2):17

    Google Scholar 

  • Dong D, Derry LA, Lion LW (2003) Pb scavenging from a freshwater lake by Mn oxides in heterogeneous surface coating materials. Water Res 37:1662–1666

    Article  Google Scholar 

  • Fei Q, Hongbing J, Qian L, Xinyue G, Lei T, Jinguo F (2014) Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J Geochem Explor 138:33–49

    Article  Google Scholar 

  • Giuliano V, Pagnanelli F, Bornoroni L, Torob L, Abbruzzese C (2007) Toxic elements at a disused mine district: particle size distribution and total concentration in stream sediments and mine tailings. J Hazard Mater 148:409–418

    Article  Google Scholar 

  • Google Maps (2014) Terrain maps. http://maps.google.com/maps?hl=en&tab=wl

  • Greene JM (1975) Life in Nelson Township, Eldorado Canyon, and Boulder City, MA Thesis (unpubl). History Dept, Univ of Nevada, Las Vegas

  • Hansen SM (1962) The Geology of the Eldorado Mining District, Clark County, Nevada. PhD Diss. Geology Dept, Univ of Missouri, Columbia

  • Hoar K, Nowinski P, Hodge V, Cizdziel J (2011) Rock varnish: a passive forensic tool for monitoring recent air pollution and source identification. Nuclear Tech 175:1–9

    Google Scholar 

  • Horowitz AJ, Elrick KA, Cook RB (1993) Effect of mining and related activities on the sediment trace element geochemistry of Lake Coeur D’Alene, Idaho, USA. Part 1: surface sediments. Hydrol Proc 7:403–423

    Article  Google Scholar 

  • Ingri J, Widerlund A, Suteerasak T, Bauer S, Elming S (2014) Changes in trace metal sedimentation during freshening of a coastal basin. Mar Chem 167:2–12

    Article  Google Scholar 

  • Johannesson KH, Tang J (2009) Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic graoundwater flow system. J Hydrol 378:13–28

    Article  Google Scholar 

  • Jones MJ, Butchins LJ, Charnock JM, Pattrick RAD, Small JS, Vaughan DJ, Wincott PL, Livens FR (2011) Reactions of radium and barium with the surface of carbonate minerals. Appl Gechem 26:1231–1238

    Article  Google Scholar 

  • Khalil A, Hanich L, Bannari A, Zouhri L, Pourret O, Hakkou R (2013) Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: pre-work of geochemical process modeling with numerical models. J Geochem Explor 125:117–129

    Article  Google Scholar 

  • Kim CS, Wilson KM, Rytuba JJ (2011) Particle-size dependence on metal(loid) distributions in mine wastes: implications for water contamination and human exposure. Appl Geochem 26:484–495

    Article  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  Google Scholar 

  • Larios R, Fernandex-Martinez R, Alvarez R, Rucandio I (2012) Arsenic pollution and fractionation in sediments and mine waste samples from different mine sites. Sci Total Environ 431:426–435

    Article  Google Scholar 

  • Levene H (1960) Robust tests for equality of variances. In: Olkin I (ed) Contributions to probability and statistics. Stanford Univ Press, Palo Alto, pp 278–292

    Google Scholar 

  • Li YH (2000) A compendium of geochemistry. Princeton Univ Press, Princeton

    Google Scholar 

  • Longwell CR, Pampeyan EH, Bowyer B, Roberts RJ (1965) Geology and minerals deposits of Clark County, Nevada. A. Carlisle, Reno

    Google Scholar 

  • Manceau A, Combes JM (1988) Structure of Mn and Fe oxides and oxyhydroxides: a topological approach by EXAFS. Phys Chem Miner 15(3):283–295

    Article  Google Scholar 

  • Modis K, Vatalis KI (2014) Assessing the risk of soil pollution around an industrialized mining region using a geostatistical approach. Soil Sediment Contam 23:63–75

    Article  Google Scholar 

  • Moreno-Jim´enez E, Peˇnalosa E, Manzano JM, Carpena-Ruiz RO (2009) Heavy metals distribution in soils surrounding an abandonedmine in NW Madrid (Spain) and their transference to wild flora. J Hazard Mater 162:854–859

    Article  Google Scholar 

  • Morikawa SA (1993) The geology of the tuff of bridge Spring: Southern Nevada and Northwestern Arizona. MS thesis, Univ of Nevada, Las Vegas

  • National Weather Service (NWS) (2014) http://www.nws.noaa.gov/organization.php. Accessed 15 Jan 2014

  • Navarro-Hervás MC, Pérez-Sirvent C, Martínez-Sánchez MJ, García-Lorenzo ML, Molina J (2012) Weathering processes in waste materials from a mining area in a semiarid zone. Appl Geochem 27:1991–2000

    Article  Google Scholar 

  • Nowinski P (2009) Desert varnish as an indicator of modern-day air pollution in southern Nevada. PhD Diss (unpubl), Dept of Environmental Studies, Univ of Nevada, Las Vegas

  • Nowinski P, Hodge VF, Lindley K, Cizdziel JV (2010) Elemental analysis of desert varnish samples in the vicinity of coal-fired power plants and the Nevada test site using laser ablation ICP-MS. Open Chem Biomed J 3:151–166

    Google Scholar 

  • Nowinski P, Hodge VF, Gerstenberger S (2012) Application of field portable X-ray fluorescence to the analysis of desert varnish samples in areas affected by coal-fired power plants. Environ Chem 9(4):379–388

    Article  Google Scholar 

  • Nowinski P, Hodge VF, Gerstenberger S, Cizdziel JV (2013) Analysis of mercury in rock varnish samples in areas impacted by coal-fired power plants. Environ Poll 179:132–137

    Article  Google Scholar 

  • Ordo˜nez C, se la Fuentea A, Díaz-Palma P (1915) Modeling the influence of benthic primary production on oxygentransport through the water–sediment interface. Ecol Model 311:1–10

    Article  Google Scholar 

  • Oyanedel-Craver VA, Smith JA (2006) Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites. J Hazard Mater B137:1102–1114

    Article  Google Scholar 

  • Rango T, Vengosh A, Dwyer G, Bianchini G (2013) Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Water Res 47:5801–5818

    Article  Google Scholar 

  • Reheis MC (2006) 16-year record of dust deposition in southern Nevada and California, USA. J Arid Environ 67:487–520

    Article  Google Scholar 

  • Ross C (2008) Preserving the culture while closing the holes-abandoned mine reclamation in Nevada. Presented at 30th Annual National Assoc of Abandoned Mine Land Program Conf, Durango

  • Sadiq M (1997) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Poll 93:117–136

    Google Scholar 

  • Sánchez-Martínez MA, Marmolejo-Rodríguez AJ, Magallanes-Ordóñez VR, Sánchez-González A (2013) Vertical accumulation of potential toxic elements in a semiarid system that is influenced by an abandoned gold mine. Estuar Coast Shelf Sci 130:42–53

    Article  Google Scholar 

  • Schropp, SJ (1988) A guide to the interpretation of metal concentrations in estuarine sediment. For the Florida Department of Environmental Protection, p 74

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3 and 4):591–611

    Article  Google Scholar 

  • Sims DB (2010) Contamination mobilization from anthropogenic influences in the Techatticup wash, Nelson, NV (USA). Soil Sediment Contam 19(5):515–530

    Article  Google Scholar 

  • Sims DB (2011) Fate of Contaminants at an Abandoned Mining site in an Arid Environment. PhD thesis (unpubl), Kingston Univ, London

  • Sims DB, Hooda PS, Gillmore GK (2013) Sediment contamination along desert wash systems from historic mining sites in a hyperarid region of southern Nevada, USA. Soil Sediment Contam 22:737–752

    Article  Google Scholar 

  • Slowey AJ, Johnson SB, Newville M, Brown GE (2007) Speciation and colloid transport of arsenic from mine tailings. Appl Geochem 22(9):1884–1898

    Article  Google Scholar 

  • Sparks DL (2003) Environmental soil chemistry. Academic Press, San Diego

    Google Scholar 

  • Taylor MP, Kesterton RGH (2002) Heavy metal contamination of an arid river environment: Gruben River, Namibia. Geomorphology 42:311–327

    Article  Google Scholar 

  • Thiagarajan N, Lee CA (2004) Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition. Earth Planet Sci Lett 224:131–141

    Article  Google Scholar 

  • Thornton Iain (1983) Applied environmental geochemistry. Academic Press, Waltham

    Google Scholar 

  • USEPA (1997) SW-846, Test methods for evaluating solids and wastes—physical/chemical methods, US Environmental Protection Agency (CD), Washington

  • Vidal M, Santos MJ, Abrao T, Rodriguez J, Rigal A (2009) Modeling competitive metal sorption in mineral soil. Geoderma 149:189–198

    Article  Google Scholar 

  • Vinson DS, Mcintosh JC, Dwyer GS, Vengosh A (2011) Arsenic and 9other oxyanion-forming trace elements in an alluvial basin aquifer: evaluating sources and mobilization by isotopic tracers (Sr, B, S, O, H, Ra). Appl Geochem 26:1364–1376

    Article  Google Scholar 

  • Warren LA, Zimmerman AP (1994) The importance of surface area in metal sorption by oxides and organic matter in a heterogeneous natural sediment. Appl Geochem 9:245–254

    Article  Google Scholar 

  • Wayne DM, Diaz TA, Fairhurst RJ, Orndorff RL, Pete DV (2006) Direct major-and trace-element analyses of rock varnish by high resolution laser ablation inductively-coupled plasma mass spectrometry (LA-ICPMS). Appl Geochem 21:1410–1431

    Article  Google Scholar 

  • Yu J, Steinberger Y (2012) Spatiotemporal changes in abiotic properties, microbial CO2 evolution, and biomass in playa and crust-covered interdune soils in a sand-dune desert ecosystem. Eur J Soil Biol 50:7–14

    Article  Google Scholar 

  • Yu L, Guo-he H, Bai-yu Z, Shu-hai G (2006) Scavenging of Cd through Fe/Mn oxides within natural surface coatings. J Environ Sci 18(6):1199–1203

    Article  Google Scholar 

Download references

Acknowledgments

We thank Deborah Morales of the University of Nevada, Las Vegas Department of Geoscience and Todd Jesus Gadol-Tait of the University of Hawaii at Hilo for the collection and processing of samples. We also thank the reviewers whose time and expertise added great value to the overall paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Sims.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sims, D.B., Hudson, A.C., Keller, J.E. et al. Trace Element Scavenging in Dry Wash Surficial Sediments in an Arid Region of Southern Nevada, USA. Mine Water Environ 36, 124–132 (2017). https://doi.org/10.1007/s10230-015-0379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-015-0379-8

Keywords

Navigation