Skip to main content

Advertisement

Log in

Carbon Footprint Analysis of Source Water for Hydraulic Fracturing: A Case Study of Mine Water Versus Freshwater

CO2-Fußabdruckanalyse von Wässern für hydraulisches Fracken: Fallstudie für Bergbauwasser im Vergleich zu Süßwasser

Análisis de huella de carbón de fuente de agua para fractura hidráulica: un caso de estudio de agua de minas versus agua dulce

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

In the face of climate change, less carbon intensive fuels are being sought. Natural gas has been perceived as a transition fuel, producing less CO2 when burned than coal, but it is not a renewable resource. Hydrocarbon-rich shale formations contain natural gas, natural gas condensate, and oil production potential, and the extraction of these compounds has allowed the USA to become one of the largest global producers of natural gas. Horizontal drilling and hydraulic fracturing are used to extract the shale gas, but hydraulic fracturing of one well typically requires between 7 and 19 million L of water. One option being explored is the use of treated mine water as an alternative to freshwater. The Marcellus and Utica shale formations underlie much of the eastern USA, and the Utica Shale is being pursued for its high natural gas potential in eastern Ohio. Permits for wells are being approved, but concerns about the water source for hydraulic fracturing fluid are increasing. We analyzed the carbon footprints of three different water sources: treated mine water from Corning, Ohio, freshwater from the Ohio River, and freshwater from Seneca Lake near the well site. CO2 emissions for each source were calculated during pumping, transportation, and treatment of the water for a one-time well use and annual use. The primary productivity increase that occurred after removal of mine discharge or reduction due to extraction from freshwater sources was also calculated. Annually, using treated mine water would emit 110,000 t of CO2-e (CO2 equivalent) if trucked to a treatment plant or 90,000 t of CO2-e if treated on-site, while using water from the Ohio River would emit 2,000 t of CO2-e, and using water from Seneca Lake would emit 4,500 t of CO2-e, annually. Of course, decreasing the amount of unpolluted freshwater used has other environmental benefits.

Zusammenfassung

Im Angesicht des Klimawandels werden Brennstoffe geringerer Kohlenstoffintensität gesucht. Erdgas wurde als Übergangsbrennstoff wahrgenommen, weil es weniger CO2 produziert als Kohle, aber es ist keine erneuerbare Ressource. Kohlenwasserstoffreiche Tonsteinformationen enthalten Erdgas, Erdgaskondensate und das Potential, Erdöl zu produzieren. Die Extraktion dieser Stoffe hat es erlaubt, daß die USA zu einem der größten globalen Produzenten von Erdgas wurde. Horizontalbohrungen und hydraulisches Fracken werden zur Förderung von Schiefergas genutzt, aber hydraulisches Fracken einer Bohrung benötigt typischerweise zwischen 7 und 19 Millionen L Wasser. Eine untersuchte Option ist die Verwendung von behandeltem Bergbauwasser als eine Alternative zu Süßwasser. Die Marcellus und Utica Tonformationen unterlagern weite Teile der östlichen USA,und der Utica Tonstein wird im östlichen Ohio wegen seines hohen Erdgaspotentiales aufgesucht. Bewilligungen für Bohrungen werden erteilt, aber Sorgen über die Herkunft des Wassers für das hydraulische Frackfluid nehmen zu. Wir haben den CO2-Fußabdruck von drei unterschiedlichen Wasserquellen untersucht: behandeltes Bergbauwasser von Corning, Ohio, Süßwasser aus dem Ohio Fluß, und Süßwasser aus dem Seneca See in der Nähe des Bohrplatzes. CO2-Emissionen für jede Quelle wurden für das Pumpen, den Transport und für die Wasseraufbereitung für den Fall einer einmaligen Nutzung oder einer mehrfachen Verwendung über ein Jahr berechnet. Die Zunahme primärer Produktivität, welche durch die Beseitigung des Bergbauwasseraustrittes entstand oder die Reduktion infolge der Entnahme aus Süßwasserquellen wurde ebenfalls berechnet. Für den Fall des Lastwagentransportes zu einer Wasseraufbereitung würde die Verwendung behandelten Bergbauwassers eine jährliche Emission von 110.000 t CO2-e (CO2-Äquivalent) bewirken, bei einer Behandlung vor Ort jedoch nur 90.000 t CO2-e, während die Nutzung von Wasser aus dem Ohio Fluß jährlich in 2.000 t CO2-e, und von Wasser aus dem Seneca See 4.500 t CO2-e resultierte. Selbstverständlich hätte die Verringerung der Nutzung sauberen Süßwassers andere Umweltvorteile.

Resumen

En vista del cambio climático, los combustibles en base carbón tienen menor demanda. Gas natural está siendo percibido como un combustible de transición, produciendo menos CO2 en la combustión que el carbón, pero no es una fuente renovable. Formaciones de esquistos bituminosos ricos en hidrocarburos, gas natural condensado, potencial de producción de petróleo y la extracción de estos compuestos ha permitido que EEUU se convirtiera en uno de los mayores productores globales de gas natural. Las perforaciones horizontales y la fractura hidráulica están siendo usados para extraer el gas de los esquistos bituminosos, pero la fractura hidráulica de un pozo requiere entre 7 y 19 millones L de agua. Una de las opciones que está siendo explorada es el uso de agua de mina tratada como una alternativa frente al agua dulce. Las formaciones de esquistos bituminosos Marcellus y Utica están en el subsuelo de buena parte de EEUU oriental y el esquisto Utica es requerido por su alto potencial en gas natural en Ohio oriental. Los permisos para pozos están siendo aprobados pero la preocupación sobre la fuente de agua para fractura hidráulica se está incrementando. Analizamos las huellas de carbón de tres fuentes de agua diferentes: agua de mina tratada de Corning, Ohio, agua dulce del Río Ohio y agua dulce del Lago Seneca cerca del sitio del pozo. Las emisiones de CO2 para cada fuente fueron calculadas durante el bombeo, transporte y tratamiento de agua para el uso del pozo una vez y para el uso anual. Se calculó también la producción primaria que ocurrió después de la remoción de la descarga de mina o la reducción debido a la extracción de fuentes de agua dulce. Anualmente, usando agua de mina tratada se emitirían 110.000 t de CO2-e (CO2 equivalente) si se transportara hasta una planta de tratamiento o 90.000 t de CO2-e si se tratara en el sitio, mientras que usando agua del Río Ohio se emitirían 2.000 t de CO2-e y usando agua del Lago Seneca se emitirían 4.500 t de CO2-e, anualmente. Por supuesto, el descenso de la cantidad de agua dulce contaminada usada tiene otros beneficios ambientales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baker Hughes (2009) Baker Hughes Announces August 2009 Rig Counts. http://www.bakerhughes.com. Accessed 22 Nov 2013

  • Baker Hughes (2013) Baker Hughes Announces August 2013 Rig Counts. http://www.bakerhughes.com. Accessed 22 Nov 2013

  • Bauers CK (2003) Whole stream metabolism and detrital processing in streams impacted by acid mine drainage. Unpubl thesis, Ohio Univ, Athens, OH, USA

  • Bowman JR (2012) Comprehensive non-point source (NPS) monitoring report for acid mine drainage (AMD). Voinovich School of Leadership and Public Affairs, Ohio Univ, Athens

    Google Scholar 

  • Bowman JR, Kruse NA, Migliore E, Gilliom R (2013) Regional baseline groundwater quality report for Athens, Belmont and surrounding counties. Voinovich School of Leadership and Public Affairs, Ohio Univ, Athens

    Google Scholar 

  • Breul H, Doman L (2013) U.S. expected to be largest producer of petroleum and natural gas hydrocarbons in 2013. U.S. Energy Information Administration, Washington, DC

    Google Scholar 

  • CEPA (California Environmental Protection Agency) (2009) Detailed California-modified GREET pathway for Corn Ethanol, Air Resources Board, Stationary Source Div, Sacramento, CA, USA. http://www.arb.ca.gov/fuels/lcfs/012009lcfs_cornetoh.pdf. Accessed 16 April 2014

  • Cravotta CA III (2008) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: constituent quantities and correlations. Appl Geochem 23:166–202

    Article  Google Scholar 

  • de Witt WJ, Roen JB, Wallace LG (1993) Stratigraphy of Devonian black shales and associated rocks in the Appalachian basin. USGS Bulletin 1909-B, Washington, DC

  • Dillon M (2011) Water scarcity and hydraulic fracturing in Pennsylvania: examining Pennsylvania water law and water shortage issues presented by natural gas operations in the Marcellus shale. Temple Law Rev 84:201–246

    Google Scholar 

  • Dormer A, Finn DP, Ward P, Cullen J (2013) Carbon footprint analysis in plastics manufacturing. J Clean Prod 51:133–141

    Article  Google Scholar 

  • Downing B (2013) Ohio Utica Shale: BHP Billiton to expand in U.S. shale oil, gas drilling. Akron Beacon J. http://www.ohio.com. Accessed 22 Nov 2013

  • Downing B (2014) 35 Pennsylvania eco-groups oppose SB 411 in letter. Akron Beacon J. http://www.ohio.com. Accessed 17 March 2014

  • Dunnahoe T (2013) Unconventional oil and gas report: Ohio’s Utica shale development has room to grow. Oil Gas J 111(10)

  • Eaton TT (2013) Science-based decision-making on complex issues: Marcellus shale gas hydrofracking and New York City water supply. Sci Total Environ 461–462:158–169

    Article  Google Scholar 

  • Ecofys (2009) Methodology for the free allocation of emission allowances in the EU ETS post 2012, Sector report for the lime industry. http://ec.europa.eu/clima/policies/ets/cap/allocation/docs/bm_study-lime_en.pdf. Accessed 1 Dec 2013

  • EIA (Energy Information Administration) (2014) Frequently asked questions: how much coal, natural gas, or petroleum is used to generate a kilowatt hour of energy? http://www.eia.gov/tools/faqs/faq.cfm?id=667&t=2. Accessed 17 March 2014

  • Environmental Protection Agency (2007) eGRID2006, version 2.1. http://www.epa.gov/cleanenergy/documents/egridzips/eGRID2006V2_1_Summary_Tables.pdf. Accessed 1 Dec 2013

  • Environmental Protection Agency (2009) Endangerment and cause or contribute findings for greenhouse gases, section 202(a) of the Clean Air Act; Final Rule. Federal Register 74: 66496–66546, Washington, DC

  • Ohio Environmental Protection Agency (OEPA) (2011) Drilling for natural gas in the Marcellus and Utica Shales: environmental regulatory basics. http://epa.ohio.gov/Portals/0/general%20pdfs/generalshale711.pdf. Accessed 23 July 2014

  • Environmental Protection Agency (2013) Standards of performance for greenhouse gas emissions from new stationary sources: electric utility generating units. Federal Register 79(5):1430–1519, Washington, DC

  • EPA’s Center for Corporate Climate Leadership (2011) Emission factors for greenhouse gas inventories. http://www.epa.gov/climateleadership/documents/emission-factors.pdf. Accessed 23 July 2014

  • Ferrar K (2010) Do the natural gas industry’s surface water withdrawals pose a health risk? Fracktracker Administrator. http://www.fractracker.org/2010/09/do-the-natural-gas-industry%E2%80%99s-surface-water-withdrawals-pose-a-health-risk/. Accessed 2 Dec 2013

  • Gleick PH (1994) Water and energy. Annu Rev Energ Environ 19:267–299

    Article  Google Scholar 

  • Global Acid Rock Drainage (GARD) Guide (2010) Drainage treatment. Ch 7.0. http://www.gardguide.com/index.php/Chapter_7. Accessed 1 Dec 2013

  • Global Action Plan (GAP), Stockholm Environment Institute, Eco-Logica Ltd (2006) UK Schools Carbon Footprint Scoping Study. Sustainable Development Commission, London

    Google Scholar 

  • Ground Water Protection Council, ALL Consulting (2009) Modern Shale Gas development in the United States: a primer. Prepared for the US DOE, Office of Fossil Energy, and NETL, Pittsburgh, PA, USA

  • Gustavsson DJI, Tumlin S (2013) Carbon footprints of Scandinavian wastewater treatment plants. Water Sci Technol 68:887–893

    Article  Google Scholar 

  • Gyure RA, Konopka A, Brooks A, Doemel W (1987) Algal and bacterial activities in acidic (pH 3) strip mine lakes. Appl Environ Microbiol 53:2069–2076

    Google Scholar 

  • Harte J (1983) Water constraints on energy development: a framework for analysis. J Am Water Resour As 19:51–57

    Article  Google Scholar 

  • Stone JJ, Hengen, T, Squillace, M (2012) Life cycle assessment analysis for active and passive acid mine drainage treatment. Presented, life cycle assessment XII conference, Tacoma, WA, USA

  • Hill EW, Kinahan KL (2013) Ohio Utica Shale Gas Monitor. Maxine Goodman Levin College of Urban Affairs Cleveland State Univ, Cleveland, OH, USA. http://www.urban.csuohio.edu/publications/hill/OhioUticaShaleGasMonitor_Aug_20_2013.pdf. Accessed 1 Dec 2013

  • Institute for Energy Research (2013) Ohio: an energy and economic analysis. http://instituteforenergyresearch.org/analysis/ohio-an-energy-and-economic-analysis/. Accessed 23 July 2014

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland

  • Jenner S, Lamadrid AJ (2012) Shale gas vs. coal: policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water and land in the United States. Energy Policy 53:442–453

    Article  Google Scholar 

  • Kaksonen AH, Puhakka JA (2007) Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Eng Life Sci 7(6):541–564

    Article  Google Scholar 

  • Kerr R (2010) Natural gas from shale bursts onto the scene. Science 328:1624–1626

    Article  Google Scholar 

  • Konieczny P, Dobrucka R, Mroczek E (2013) Using carbon footprint analysis to evaluate environmental issues of food transportation. Sci J Logist 9:3–10

    Google Scholar 

  • Levings CD, Varela DE, Mehlenbacher NM, Barry KL, Piercey GE, Guo M, Harrison PJ (2005) Effect of an acid mine drainage effluent on phytoplankton biomass and primary production at Britannia Beach, Howe Sound, British Columbia. Mar Pollut Bull 50:1585–1594

    Article  Google Scholar 

  • Moniz EJ, Jacoby HD, Meggs AJM (2011) The future of natural gas: an interdisciplinary MIT study. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Morgan MD (1985) Photosynthetically elevated pH in acid water with high nutrient content and its significance for the zooplankton community. Hydrobiologia 128:239–247

    Article  Google Scholar 

  • Neculita CM, Zagury GJ, Bussiere B (2007) Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. J Environ Qual 36:1–16

    Article  Google Scholar 

  • Nicot JP, Scanlon BR (2012) Water use for shale-gas production in Texas, U.S. Environ Sci Technol 46:3580–3586

    Article  Google Scholar 

  • Nixdorf B, Krumbeck H, Jander J, Beulker C (2003) Comparison of bacterial and phytoplankton productivity in extremely acidic mining lakes and eutrophic hard water lakes. Acta Oceologica 24:S282–S288

    Google Scholar 

  • Niyogi DK, Lewis WMJ, McKnight DM (2002) Effects of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams. Ecosystems 5:554–567

    Google Scholar 

  • Obama B (2013) The President’s climate action plan. White House Executive Office of the President, Washington, DC

    Google Scholar 

  • Ohio Department of Natural Resources (2013) Utica/Point Pleasant Shale Wells: Week of 11/10/2013-11/16/2013. Div of Oil and Gas Resources Mgmt, Columbus

    Google Scholar 

  • Ohio Watershed Data (2013) Sunday Creek surface water data. www.watersheddata.com. Accessed 2 Nov 2013

  • Parkhill KL, Gulliver JS (2002) Effect of inorganic sediment on whole-stream productivity. Hydrobiologia 472:5–17

    Article  Google Scholar 

  • PDEP (PA Dept of Environmental Protection) (2013) White paper: utilization of Mine Influenced Water for Natural Gas Extraction Activities. Harrisburg, PA, USA. http://www.bipc.com/files/media/misc/6c8353f92ee6a9c7b973a78c1edd462f.pdf

  • Postel S (1992) Last oasis: facing water scarcity. WW Norton & Company Ltd, London

    Google Scholar 

  • Press TERI (2013) Ohio’s resurgent natural gas industry spends millions to set up shop. Energy First 1:10

    Google Scholar 

  • RSK Environmental Ltd (2002) Atmospheric emissions inventories-methods and assumptions. South Caucasus Pipeline Expansion Project Environmental and Social Impact Assessment, Helsby

    Google Scholar 

  • Tatton MJ, Archer DB, Powell GE, Parker ML (1989) Methanogenesis from ethanol by defined mixed continuous cultures. Appl Environ Microbiol 55(2):440–445

    Google Scholar 

  • Tett SFB, Stott PA, Allen MR, Ingram WJ, Mitchell JFB (1999) Causes of twentieth-century temperature change near the Earth’s surface. Nature 399:569–572

    Article  Google Scholar 

  • U.S. Army Corps of Engineers (2014) Senecaville Lake. http://www.lrh-wc.usace.army.mil/wc/sesns.htm. Accessed 18 March 2014

  • Wackernagel M, Rees W (1962) Our ecological footprint: reducing human impact on the Earth. New Society Publ, Gabriola Island

    Google Scholar 

  • Weidema BP, Thrane M, Christensen P, Schmidt J, Lokke S (2008) Carbon footprint: a catalyst for life cycle assessment. J Ind Ecol 12:3–6

    Article  Google Scholar 

  • Wiedmann T, Minx J (2008) A definition of ‘carbon footprint’. In: Pertsova CC (ed) Ecological economics research trends. Nova Science, Hauppauge, pp 1–11

    Google Scholar 

  • Wright LA, Kemp S, Williams I (2011) ‘Carbon footprinting’: towards a universally accepted definition. Carbon Manage 2:61–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie A. Kruse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macy, T.R., Kruse, N.A. & Stuart, B.J. Carbon Footprint Analysis of Source Water for Hydraulic Fracturing: A Case Study of Mine Water Versus Freshwater. Mine Water Environ 34, 20–30 (2015). https://doi.org/10.1007/s10230-014-0291-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0291-7

Keywords

Navigation