Skip to main content
Log in

Arsenic Geochemistry of Acid Mine Drainage

Arsen-Geochemie von Acid Mine Drainage

Arsénico Geoquímica de drenaje ácido de minas

酸性废水中砷的地球化学特性

  • Review
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Due to geochemical similarity between arsenic and sulphur, polymetallic sulphide deposits and pyrite/arsenopyrite-bearing coal beds often contain exceptionally high concentrations of arsenic. Arsenic release from mine waste occurs after oxidative dissolution of sulphide minerals. Both arsenite and arsenate forms coexist in many mine drainage localities, with the latter oxidation state more common. The rate of arsenite oxidation to arsenate in such environments is mostly controlled by the availability of oxygen and arsenic-oxidizing microbes. Most released arsenic gets naturally attenuated within few meters downstream by adsorption and co-precipitation; amorphous precipitates such as schwertmannite or hydrous ferric oxides are better sinks than crystalline counterparts, such as goethite and jarosite. Because arsenate has a stronger affinity than arsenite for sorbents at acidic pH, arsenate-dominated mine water often contains lower levels of arsenic than arsenite-dominated mine water. Secondary mineral precipitation is largely controlled by distribution of acid-neutralizing minerals, such as carbonates and aluminosilicates. In addition to natural attenuation, active and passive treatment of mine water can lower arsenic levels to meet legal limits.

Zusammenfassung

Durch geochemische Ähnlichkeit zwischen Arsen und Schwefel, polymetallischen Sulfidlagerstätten und Pyrit/Arsenopyrit-Lager Kohleflözen enthalten oft besonders hohe Konzentrationen von Arsen. Arsenfreisetzung aus Abraum tritt nach der oxidativen Auflösung des Sulfidmineralien. Beide Arsenit und Arsenat Formen nebeneinander existieren in vielen Mine Drainage Ortschaften, wobei letztere Oxidationszustand häufiger. Die Rate der Oxidation Arsenit in solchen Umgebungen Arsenat wird hauptsächlich durch die Verfügbarkeit von Sauerstoff und Arsen oxidierenden Mikroorganismen gesteuert. Die meisten Arsen freigesetzt wird natürlich nur wenige Meter stromabwärts durch Adsorption und Co-Fällung abgeschwächt; amorphe Niederschläge wie Schwertmannit oder wasserhaltigen Eisenoxiden sind besser als kristalline Waschbecken Kollegen, wie Goethit und Jarosit. Da Arsenat eine stärkere Affinität als Sorptionsmittel für Arsenit bei saurem pH-Wert, enthält Arsenat-dominierten Grubenwasser oft niedriger Werte von Arsen als Arsenit dominierten Grubenwasser. Sekundär Mineralpräzipitation wird weitgehend durch Verteilung von Säure-neutralisierenden Mineralien, wie Carbonate und Alumosilikate gesteuert. Zusätzlich zu den natürlichen Dämpfung, aktive und passive Behandlung der Grubenwasserspiegel senken kann Arsen gesetzlichen Grenzen zu treffen.

Resumen

Debido a la similitud entre la geoquímica arsénico y azufre, los depósitos de sulfuros polimetálicos y pirita/yacimientos de carbón arsenopirita soportan a menudo contienen concentraciones excepcionalmente altas de arsénico. Liberación de arsénico de los desechos mineros se produce después de la disolución oxidativa de minerales de sulfuro. Ambas formas arsenito y arseniato coexisten en muchas localidades de drenaje de minas, con el estado de oxidación último más común. La tasa de oxidación de arsenito a arseniato en tales entornos es controlado principalmente por la disponibilidad de oxígeno y microbios de arsénico-oxidante. Arsénico más liberado se atenúa de forma natural dentro de pocos metros aguas abajo por adsorción y coprecipitación; precipitados amorfos tales como schwertmannita o óxidos férricos hidratados son mejores que los sumideros homólogos cristalinos, tales como goetita y jarosita. Debido a que el arseniato tiene una afinidad más fuerte que el arsenito de sorbentes a pH ácido, agua de la mina arseniato dominada a menudo contiene niveles bajos de arsénico que el agua de minas arsenito dominada. Precipitación mineral secundario está controlado en gran parte por la distribución de los minerales que neutralizan el ácido, tales como carbonatos y aluminosilicatos. Además de la atenuación natural, activo y pasivo de tratamiento de agua de mina puede reducir los niveles de arsénico para cumplir con los límites legales.

抽象

由于砷和硫的地球化学性质相似,含有多金属硫化物沉积物和黄铁矿/毒砂的煤层也常富有异常高的砷元素。硫化物氧化、溶解之后,砷也便从煤矿的废弃矸石中释出。亚砷酸盐和砷酸盐在许多矿井废水中共存,且砷酸盐多呈氧化态。亚砷酸盐氧化为砷酸盐的速度主要受含氧量和砷氧化细菌控制。由于吸附和共同沉淀作用,释放出的砷在下游几米范围内已经明显自然衰减。施氏矿或水合氧化铁等非晶质沉淀是比针铁矿、黄钾铁矾等晶状矿物更好的吸沉场所。在酸性水环境中,砷酸盐比亚砷酸盐对吸着剂具有更好的亲和能力,砷酸盐为主的矿井废水比亚砷酸盐为主的矿井废水的砷含量更低。次生矿物沉淀主要受碳酸盐、铝硅酸盐等酸中和矿物控制。除自然衰减小作用外,矿井废水主动处理与被动处理能够进一步将砷含量降至满足水质规范要求。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achterberg E, Braungardt C, Morley NH, Elbazpoulichet F, Leblanc M (1999) Impact of Los Frailes mine spill on riverine, estuarine and coastal waters in southern Spain. Water Res 33:3387–3394

    Article  Google Scholar 

  • Akcil A, Koldas S (2006) Acid mine drainage: causes, treatment and case studies. J Clean Prod 14:1139–1145

    Article  Google Scholar 

  • Al-Abed SR, Jegadeesan G, Purandare J, Allen D (2007) Arsenic release from iron rich mineral processing waste: influence of pH and redox potential. Chemosphere 66:775–782

    Article  Google Scholar 

  • Asta MP, Ayora C, Román-Ross G, Cama J, Acero P, Gault AG, Charnock JM, Bardelli F (2010) Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): the role of iron precipitates. Chem Geol 271:1–12

    Article  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  Google Scholar 

  • Beauchemin S, John Kwong YT (2007) Fluctuating redox conditions and phosphorus competition: contributors to arsenic release from wetland tailings in cobalt, Ontario. Mining and the Environment IV Conf, Sudbury, Ontario, Canada, CANMET-MMSL contribution 07-077-2 (OPJ). http://www.cobaltmininglegacy.ca/studies/Sudbury_2007_Beauchemin_and_Kwong-paper.pdf

  • Bigham JM, Schwertmann U, Carlson L, Murad E (1990) A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in aid mine waters. Geochim Cosmochim Acta 54:2743–2758

    Article  Google Scholar 

  • Bruneel O, Eleelbaz-Poulichet F, Casiot C, Personne JC, Morin G, Duran R (2006a) Microbial attenuation of pollution in the Carnoulès acid mine drainage (Gard, France). Proc, Difpolmine Conf, Le Corum, Montpellier, France, pp 1–7

    Google Scholar 

  • Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personne JC (2006b) Diversity of microorganisms involved in Fe-As-rich acid mine drainage waters of Carnoulès (France). Appl Environ Microbiol 72:551–556

    Article  Google Scholar 

  • Carlson L, Bigham JM, Schwertmann U (2002) Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environ Sci Technol 36:1712–1719

    Article  Google Scholar 

  • Casiot C, Leblanc M, Bruneel O, Personne JC, Koffi K, Elbaz-Poulichet F (2003a) Formation of As-rich waters within a tailings impoundment (Carnoulès, France). Aquat Geochem 9:273–290

    Article  Google Scholar 

  • Casiot C, Morin G, Bruneel O, Personne JC, Leblanc M, Dusquesne C, Bonnefoy V, Elbaz-Poulichet F (2003b) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès Creek, France). Arsenic behaviour in the aqueous phase. Water Res 37:2929–2936

    Article  Google Scholar 

  • Cheng H, Hu Y, Luo J, Xu B, Zhao J (2009) Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J Hazard Mater 165:13–26

    Article  Google Scholar 

  • Childs CW, Inoue K, Mizota C (1998) Natural and anthropogenic schwertmannites from Towada-Hachimantai National Park, Honshu, Japan. Chem Geol 144:81–86

    Article  Google Scholar 

  • Choi O, Clevenger TE, Deng B, Surampalli RY, Ross L Jr, Hu Z (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43:1879–1886

    Article  Google Scholar 

  • Costello C (2003) Acid mine drainage: innovative treatment technologies. USEPA. http://www.brownfieldstsc.org/pdfs/AMDInnovativeTrtTech_03.pdf

  • Courtin-Nomade A, Grosbois C, Bril H, Roussel C (2005) Spatial variability of arsenic in some iron-rich deposits generated by acid mine drainage. Appl Geochem 20:383–396

    Article  Google Scholar 

  • Dold B (2005) Basic concepts of environmental geochemistry of sulfide mine-waste. Prc, XXIV Curso Latinoamericano de Metalogenia UNESCO-SEG, Lima, Perú, pp 1–36

    Google Scholar 

  • Drahota P, Filippi M (2009) Secondary arsenic minerals in the environment: a review. Environ Int 35:1243–1255

    Article  Google Scholar 

  • Druschel GK, Baker BJ, Gihring TM, Banfield JF (2004) Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem Trans 5:13–32

    Article  Google Scholar 

  • Eary LE, Schramke JA (1990) Rates of inorganic oxidation reactions involving dissolved oxygen. In: Melchior DC, Bassett RL (eds) Chemical Modeling of Aqueous Systems II, ACS Symp Series 416. American Chemical Soc, Washington DC, pp 379–396

    Chapter  Google Scholar 

  • Egal M, Casiot C, Morin G, Parmentier M, Bruneel O, Lebrun S, Elbaz-Poulichet F (2009) Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water. Chem Geol 265:432–441

    Article  Google Scholar 

  • Elbaz-poulichet F, Bruneel O, Casiot C (2006) The Carnoulès mine. Generation of As-rich acid mine drainage, natural attenuation processes and solutions for passive in situ remediation. Proc, Difpolmine Conf, Le Corum, Montpellier, France, pp 1–7

  • Evangelou VP (1998) Pyrite chemistry: the key for abatement of acid mine drainage. In: Geller A, Klapper H, Salomons W (eds) Acidic Mining Lakes: Acid Mine Drainage, Limnology and Reclamation. Springer, Berlin, pp 197–222

    Chapter  Google Scholar 

  • Filippi M (2004) Oxidation of the arsenic-rich concentrate at the Pˇrebuz abandoned mine (Erzgebirge Mts., CZ): mineralogical evolution. Sci Total Environ 322:271–282

    Article  Google Scholar 

  • Fillpek LH, Nordstrom DK, Ficklin WH (1987) Interaction of acid mine drainage with waters and sediments of west squaw creek in the West Shasta mining district, California. Environ Sci Technol 21:388–396

    Article  Google Scholar 

  • Flemming RL, Salzsauler KA, Sherriff BL, Sidenko NV (2005) Identification of scorodite in fine-grained, high-sulfide, arsenopyrite mine-waste using micro X-ray diffraction (μXRD). Can Miner 43:1243–1254

    Article  Google Scholar 

  • Fukushi K, Sasaki M, Sato T, Yanase N, Amano H, Ikeda H (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl Geochem 18:1267–1278

    Article  Google Scholar 

  • Gandy CJ, Smith JWN, Jarvis AP (2007) Attenuation of mining-derived pollutants in the hyporheic zone: a review. Sci Total Environ 373:435–446

    Article  Google Scholar 

  • Ganne P, Cappuyns TV, Vervoort A, Buve´ L, Swennen R (2006) Leachability of heavy metals and arsenic from slags of metal extraction industry at Angleur (eastern Belgium). Sci Total Environ 356:69–85

    Article  Google Scholar 

  • Gault AG, Cooke DR, Townsend AT, Charnock JM, Polya DA (2005) Mechanism of arsenic attenuation in acid mine drainage from Mount Bischoff, western Tasmania. Sci Total Environ 345:219–228

    Article  Google Scholar 

  • Gemici U (2008) Evaluation of the water quality related to the acid mine drainage of an abandoned mercury mine (Alaşehir, Turkey). Environ Monit Assess 147:93–106

    Article  Google Scholar 

  • Haffert L, Craw D (2008a) Mineralogical controls on environmental mobility of arsenic from historic mine processing residues, New Zealand. Appl Geochem 23:1467–1483

    Article  Google Scholar 

  • Haffert L, Craw D (2008b) Processes of attenuation of dissolved arsenic downstream from historic gold mine sites, New Zealand. Sci Total Environ 405:286–300

    Article  Google Scholar 

  • Harrison AP Jr (1984) The acidophilic Thiobacilli and other acidophilic bacteria that share their habitat. Annu Rev Microbiol 38:265–292

    Article  Google Scholar 

  • Johnson DB (1995) Acidophilic microbial communities: candidates for bioremediation of acidic mine effluents. Int Biodeterior Biodegradation 35:41–58

    Article  Google Scholar 

  • Johnson D, Hallberg K (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Article  Google Scholar 

  • Kleinmann RL, Erickson PM (1983) Control of acid drainage from coal refuse using anionic surfactants. US Bureau of Mines RI 8847, Pittsburgh, PA

    Google Scholar 

  • Kleinmann RL, Hedin RS, Nairn RW (1998) Treatment of mine drainage by anoxic limestone drains and constructed wetlands. In: Geller A, Klapper H, Salomons W (eds) Acidic mining lakes: acid mine drainage limnology and reclamation. Springer, Berlin, pp 303–319

    Chapter  Google Scholar 

  • Kuyucak N (2002) Role of microorganisms in mining: generation of acid rock drainage and its mitigation and treatment. Eur J Miner Process Environ Prot 2:179–196. http://ejmpep.com/kuyucak.pdf

  • Langmuir D (1997) Acid mine waters. In: McConnin R (ed) Aqueous environmental geochemistry. Prentice-Hall, NJ, pp 457–478

    Google Scholar 

  • Lattanzi P, Pelo SD, Musu E, Atzei D, Elsener B, Fantauzzi M, Rossi A (2008) Enargite oxidation: a review. Earth Sci Rev 86:62–88

    Article  Google Scholar 

  • Lee P, Kang M, Choi S, Touray J (2005) Sulfide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea. Appl Geochem 20:1687–1703

    Article  Google Scholar 

  • Lengke MF, Tempel RN (2001) Kinetic rates of amorphous As2S3 oxidation at 25 to 40°C and initial pH of 7.3 to 9.4. Geochim Cosmochim Acta 65:2241–2255

    Article  Google Scholar 

  • Lengke MF, Tempel RN (2002) Reaction rates of natural orpiment oxidation at 25 to 40°C and pH 6.8 to 8.2 and comparison with amorphous As2S3 oxidation. Geochim Cosmochim Acta 66:3281–3291

    Article  Google Scholar 

  • Lengke MF, Tempel RN (2003) Natural realgar and amorphous AsS oxidation kinetics. Geochim Cosmochim Acta 67:859–871

    Article  Google Scholar 

  • Lengke MF, Sanpawanitchakit C, Tempel RN (2009) The oxidation and dissolution of arsenic-bearing sulphides. Can Miner 47:593–613

    Article  Google Scholar 

  • Lim M, Han G, Ahn J, You K, Kim H (2009) Leachability of arsenic and heavy metals from mine tailings of abandoned metal mines. Int J Environ Res Public Health 6:2865–2879

    Article  Google Scholar 

  • Lin Z (1997) Mobilization and retention of heavy metals in mill-tailings from Garpenberg sulfide mines, Sweden. Sci Total Environ 198:13–31

    Article  Google Scholar 

  • Lin T, Wu J (2001) Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Res 35:2049–2057

    Article  Google Scholar 

  • Loos MA, Bosch C, Mare´ J, Immelman E, Sanderson RD (1989) Evaluation of sodium lauryl sulfate, sodium benzoate and sorbic acid as inhibitors of acidification of South African coal waste. Groundwater and Mining: Proc, 5th Biennial Symp of the Groundwater Div of the Geological Survey of South Africa, Randberg, Transvaal, Geological Soc of South Africa, Pretoria, pp 193–200

  • Lowson RT (1982) Aqueous oxidation of pyrite by molecular oxygen. Chem Rev 82:461–497

    Article  Google Scholar 

  • Lu X, Zhang X (2005) Environmental geochemistry study of arsenic in Western Hunan mining area, P.R China. Environ Geochem Health 27:313–320

    Article  Google Scholar 

  • Luong HV, Braddock JF, Brown EJ (1985) Microbial leaching of arsenic from low-sulphide gold mine material. Geomicrobiol J 4:73–86

    Article  Google Scholar 

  • Majzlan J, Lalinská B, Chovan M, Jurkovič Ĺ, Milovská S, Gőttlicher J (2007) The formation, structure, and ageing of As-rich hydrous ferric oxide at the abandoned Sb deposit Pezinok (Slovakia). Geochim Cosmochim Acta 71:4206–4220

    Article  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  Google Scholar 

  • Marszatek H, Wąsik M (2000) Influence of arsenic-bearing gold deposits on water quality in Zloty Stok mining area (SW Poland). Environ Geol 39:888–892

    Article  Google Scholar 

  • Moncur MC, Jambor JL, Ptacek CJ, Blowes DW (2009) Mine drainage from the weathering of sulfide minerals and magnetite. Appl Geochem 24:2362–2373

    Article  Google Scholar 

  • Morin G, Lecocq D, Juillot F, Calas G, Ildefonse P, Belin S, Briois V, Dillmann P, Chevallier P, Gauthier C, Sole A, Petit PE, Borensztajn S (2002) EXAFS evidence of sorbed As(V) and pharmacoside rite in a soil overlying the Echassieres geochemical anamoly, Allier, France. Bull Soc Geol Fr 173:281–291

  • Morin G, Jullot F, Casiot C, Bruneel O, Personne JC, Elbaz-Poulichet F, Leblanc M, Ildefonse P, Calas G (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). XANES and XRD evidence of As(V)- or As(III)-Fe(III) gels and tooeleite. Environ Sci Technol 37:1705–1712

    Article  Google Scholar 

  • Murciego AM, Pascual EP, González MAR, Ayuso EÁ, Sánchez AG, Rubio F, Rrubio J, Rubin J (2010) Secondary products of arsenopyrite in the Terrubias mining area (Salamanca, Spain). Macla Revista de la sociedad española de mineralogía 13:165–166

    Google Scholar 

  • Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Kitrick JA, Fanning DS, Hossner LR (eds) Acid Sulfate Weathering Soil Science Soc of America. Madison, WI, pp 37–56

    Google Scholar 

  • Nordstrom DK, Alpers CN (1999a) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund Site, California. Proc Natl Acad Sci 96:3455–3462

    Article  Google Scholar 

  • Nordstrom DK, Alpers CN (1999b) Geochemistry of Acid Mine Waters. The environmental geochemistry of mineral deposits, Part A: Processes, techniques, and health issues, vol 6A, ch 4, reviews in economic geology, soc of economic geologists, Chelsea, MI, USA, pp 133–160

  • Ódor L, Wanty RB, Horváth I, Fügedi U (1998) Mobilization and attenuation of metals downstream from a base-metal mining site in the Ma´tra Mountains, northeastern Hungary. J Geochem Explor 65:47–60

    Article  Google Scholar 

  • PA USE (1995) Workshop report: mine waste technical forum. US Environmental Protection Agency (USEPA), Washington DC

  • Paikaray S, Peiffer S (2010) Dissolution kinetics of sulfate from schwertmannite under variable pH conditions. Mine Water Environ 29:263–269

    Article  Google Scholar 

  • Paikaray S, Banerjee S, Mukherji S (2005) Sorption of arsenic onto Vindhyan shales: role of pyrite and organic carbon. Curr Sci 88:1580–1585

    Google Scholar 

  • Paikaray S, Göttlicher J, Peiffer S (2011) Removal of As(III) from acidic waters using schwertmannite: surface speciation and effect of synthesis pathway. Chem Geol 283:134–142

    Article  Google Scholar 

  • Payne KB, Abdel-Fattah TM (2005) Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength. J Environ Sci Health 40:723–749

    Article  Google Scholar 

  • Peretyazhko T, Zachara JM, Boily JF, Xia Y, Gassman PL, Arey BW, Burgos WD (2009) Mineralogical transformations controlling acid mine drainage chemistry. Chem Geol 262:169–178

    Article  Google Scholar 

  • Ravengai S, Love D, Mabvira-Meck M, Musiwa K, Moyce W (2005) Water quality in an abandoned gold mining belt, Beatrice, Sanyati Valley, Zimbabwe. Phys Chem Earth 30:826–831

    Article  Google Scholar 

  • Reisinger HJ, Burris DR, Hering JG (2005) Reme-diation subsurface arsenic contamination with monitored natural attenuation. Environ Sci Technol 39:458A–464A

    Article  Google Scholar 

  • Rimstidt DJ, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880

    Article  Google Scholar 

  • Roman-Ross G, Perez-Lopez R, Asta M, Ibanez CA (2010) Arsenic attenuation in acid mine drainage: atomic reasons for field space and time variations. Macla: Revista de la Sociedad Espanola de Mineralogia 13:183–184

  • Romero FM, Prol-Ledesma RM, Canet C, Alvares LN, Pérez-Vázquez R (2010) Acid drainage at the inactive Santa Lucia mine, western Cuba: natural attenuation of arsenic, barium and lead, and geochemical behavior of rare earth elements. Appl Geochem 25:716–727

    Article  Google Scholar 

  • Sadiq M (1997) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93:117–136

    Google Scholar 

  • Sarmiento AM, Olias M, Nieto JM, Cánovas CR, Delgado J (2009) Natural attenuation processes in two water reservoirs receiving acid mine drainage. Sci Total Environ 407:2051–2062

    Article  Google Scholar 

  • Savage KS, Bird DK, O’Day PA (2005) Arsenic speciation in synthetic jarosite. Chem Geol 215:473–498

    Article  Google Scholar 

  • Slowey AJ, Johnson SB, Newville M, Brown GE Jr (2007) Speciation and colloid transport of arsenic from mine tailings. Appl Geochem 22:1884–1898

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Štrbac N, Mihajlović I, Minić D, Živković D, Živković Ž (2009) Kinetics and mechanism of arsenic sulfides oxidation. J Min Metall 45:59–67

    Article  Google Scholar 

  • Tallman DE, Shaikh AU (1980) Redox stability of inorganic arsenic(III) and arsenic(V) in aqueous solution. Anal Chem 52:196–199

    Article  Google Scholar 

  • Walker FP, Schreiber ME, Rimstidt JD (2006) Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochim Cosmochim Acta 70:1668–1676

    Article  Google Scholar 

  • Watzlaf G, Schroeder K, Kleinmann RL, Kairies C, Nairn R (2004) The Passive Treatment of Coal Mine Drainage. US Dept of Energy, DOE/NETL-2004/1202, Pittsburgh, PA, USA

  • Wichlacz PL, Unz RF (1981) Acidophilic heterotrophic bacteria of acidic mine waters. Appl Environ Microbiol 41:1254–1261

    Google Scholar 

  • Williams M (2001) Arsenic in mine waters: an international study. Environ Geol 40:267–273

    Article  Google Scholar 

  • Williamson MA, Rimstidt JD (1994) The kinetics and electrochemical rate-determining step of aqueous pprite oxidation. Geochim Cosmochim Acta 58:5443–5454

    Article  Google Scholar 

  • Woo NC, Choi MJ (2001) Arsenic and metal contamination of water resources from mining wastes in Korea. Environ Geol 40:305–311

    Article  Google Scholar 

  • Younger P, Coulton R, Frogatt E (2005) The contribution of science to risk-based decision-making: lessons from the development of full-scale treatment measures for acidic mine waters at Wheal Jane, UK. Sci Total Environ 338:137–154

    Article  Google Scholar 

  • Yu JY, Heo B (2001) Dilution and removal of dissolved metals from acid mine drainage along Imgok creek, Korea. Appl Geochem 16:1041–1053

    Article  Google Scholar 

  • Yu Y, Zhu Y, Williams-Jones AE, Gao Z, Li D (2004) A kinetic study of the oxidation of arsenopyrite in acidic solutions: implications for the environment. Appl Geochem 19:435–444

    Article  Google Scholar 

  • Yu Y, Zhu Y, Gao Z, Gammons CH, Li D (2007) Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8–12.6 and 15–45 °C. Environ Sci Technol 41:6460–6464

    Article  Google Scholar 

  • Zhu W (2010) Chemical and microbial control of pyrite weathering and its implications to arsenic mobility and sulfur and iron geochemistry. PhD Diss, Rutgers, the State Univ of New Jersey, USA, New Brunswick, NJ, USA

  • Zhu W, Young LY, Yee N, Serfes M, Rhine ED, Reinfelder JR (2008) Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite. Geochim Cosmochim Acta 72:5243–5250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Paikaray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paikaray, S. Arsenic Geochemistry of Acid Mine Drainage. Mine Water Environ 34, 181–196 (2015). https://doi.org/10.1007/s10230-014-0286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0286-4

Keywords

Navigation