Skip to main content

Advertisement

Log in

Environmentally Hazardous Boron in Gold Mine Tailings, Timmins, Ontario, Canada

Umweltgefährdendes Bor in Aufbereitungsrückständen eines Goldbergwerks in Timmins, Ontario, Kanada

Boro ambientalmente peligroso en colas de minas de oro, Timmins, Ontario, Canada

加拿大安大略省(Ontario)蒂明斯市(Timmins)金矿尾矿的硼污染

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Traditionally, cyanide, mercury, and acid mine drainage are considered critical environmental hazards associated with gold mining. To our knowledge, this is the first study of hazardous concentrations of soluble boron (B) in a gold mine impoundment tailings dam. We suggest that the B anomaly is a consequence of disposal of gold pyrometallurgical waste (slag). Borax is a common flux used during fire assaying and refining of precious metals. Vast amounts of B-rich slag may have been discarded by mining operations and precious metal refineries worldwide, but the extent and effects of B contamination have not yet been addressed. Anomalous concentrations of soluble B found in the McIntyre mine tailings, Timmins, Ontario highly exceed recommended thresholds for groundwater, freshwater, and soil leachates, and cannot be explained by natural sources alone. Boron is distributed heterogeneously within the tailings dam and correlates positively with the percentage of ≤38 μm grain-size fraction, indicating that adsorption onto silt–clay particles results in B build-up. Ephemeral, efflorescent Mg-borate found along the dam embankment suggests an outflow of B along paths of high permeability. Leachability tests indicate that slags from gold-ore refineries and fire assaying labs release ≤12 wt% soluble B in only 24 h. This high leachability suggests that slag discarded on the tailings dam is the dominant source of observed B anomalies. Altered metabasalts with <3,000 mg/kg B may be a minor B source. Gangue minerals such as tourmaline, anhydrite, calcite, and siderite cannot account for the amount of soluble B found in the tailings.

Zusammenfassung

Üblicherweise werden Zyanid, Quecksilber und saures Grubenwasser als kritische Umweltgefahren des Goldbergbaus angesehen. Unseres Wissens ist dies die erste Studie über gefährliche Konzentrationen von löslichem Bor (B) in Freiwasser von Aufbereitungsrückständen des Goldbergbaus. Es ist naheliegend, dass die B-Anomalie aus der Ablagerung pyrometallurgischer Abfälle (Schlacke) der Goldaufbereitung stammt, da Borax üblicherweise als Flussmittel während des Probierens und der Raffination von Edelmetallen verwendet wird. Weltweit sind vermutlich große Mengen B-reicher Schlacken aus dem Bergbau und der Raffination von Edelmetallen abgelagert worden, aber das Ausmaß und die Auswirkungen der B-Kontamination wurden bislang nicht betrachtet. Anomale Konzentrationen von löslichem B in den Aufbereitungsrückständen des Bergwerks McIntyre in Timmins, Ontario überschreiten deutlich die empfohlenen Grenzwerte für das Grundwasser, Trinkwasser und Bodensickerwasser, und lassen sich nicht alleine durch natürliche Quellen erklären. Bor ist heterogen innerhalb des Damms verteilt und korreliert positiv mit dem prozentualen Anteil der ≤ 38 µm Kornfraktion. Dies zeigt, dass die Anreicherung von B durch die Adsorption an Schlamm-Ton-Partikel hervorgerufen wird. Gelegentlich auftretende Verwitterungsprodukte von Mg-Borat entlang der Dammböschung lassen vermuten, dass B über Bereiche mit hoher Permeabilität transportiert wird. Laugungstests zeigen, dass Schlacken aus den Raffinerien des Golderzes und den Probierlabors in nur 24 Stunden bis zu 12 Gew% lösliches B freisetzen. Diese hohe Auslaugbarkeit legt nahe, dass die mit den Aufbereitungsrückständen abgelagerte Schlacke die dominierende Quelle der beobachteten B-Anomalien ist. Verwitterte Metabasalte mit bis zu 3.000 mg/kg B können eine kleinere B-Quelle sein. Gangmineralien wie Turmalin, Anhydrit, Calcit und Siderit sind nicht für die gefundenen Mengen löslichen Bors in den Aufbereitungsrückständen verantwortlich.

Resumen

Tradicionalmente, cianuro, mercurio y drenajes ácidos de minas son considerados los riesgos ambientales críticos asociados a la minería del oro. De acuerdo a nuestro conocimiento, este es el primer estudio sobre concentraciones de riesgo de boro (B) soluble en los diques de colas de una minera de oro. Sugerimos que los niveles anormales de B son una consecuencia de la disposición de residuos pirometalúrgicos (slag). El bórax es el medio utilizado comúnmente en los ensayos al fuego y en la refinería de metales preciosos. Grandes cantidades de slag ricos en B pueden haber sido descargados por operaciones mineras y por las refinerías de metales preciosos en todo el mundo, pero la extensión y los efectos de la contaminación con B aun no han sido considerados. Concentraciones anómalas de B soluble fueron encontradas en las colas de la mina McIntyre, Timmins, Ontario; las mismas exceden en mucho los niveles recomendados para aguas subterráneas, aguas dulces y lixiviados de suelo y no pueden ser explicados sólo a partir de fuentes naturales. El boro está distribuido heterogéneamente dentro del dique de colas y correlaciona positivamente con el porcentaje de la fracción de tamaño de grano ≤38 μm indicando que la adsorción en las partículas de limo-arcilla produce un incremento del B. Los boratos de magnesio eflorescentes encontradas a lo largo del terraplén del dique de colas sugiere un afloramiento de B a lo largo de zonas de alta permeabilidad. Los ensayos de lixiviación indican que los slags provenientes de las refinerías de mineral de oro y de los ensayos al fuego liberan ≤12 % en peso de B soluble en solo 24 h. Esta alta capacidad de ser lixiviados sugiere que los slag dispuestos en las colas son la fuente dominante de las anomalías de B observadas. Metabasaltos alterados con <3,000 mg/kg B podrían ser una fuente menor de B. Los minerales presentes en la ganga como turmalina, anhidrita, calcita y siderita no pueden justificar la cantidad de B soluble encontrada en las colas.

摘要

氰化物、汞和酸性废水是金矿开采和冶炼过程产生的主要污染物。本文第一次研究了金矿尾矿坝中可溶态硼的环境污染。金矿矿石高温冶金过程产生的废渣是引起尾矿坝硼浓度异常的主要污染物。硼砂是许多贵重金属火试金分离试验与精炼工艺常用的助溶剂和造渣剂。虽然贵重金属的采矿和冶炼每年在全球范围内遗弃大量富含硼的矿渣,但是硼污染的范围和程度问题仍未解决。加拿大安大略省(Ontario) 蒂明斯市(Timmins) McIntyre金矿尾矿中可溶态硼浓度异常,已经远超过地下水、淡水和土壤液的允许阈值。硼不均匀地分布于尾矿坝中,浓度与粒径小于38μm尾矿的含量成正比,粉粒~粘粒尾矿颗粒的吸附作用是硼累积的重要原因。微风化的硼酸镁沿尾矿坝坝堤分布的特征说明可溶态硼是沿高渗透性路径向外运移、释放的。同时,溶滤试验表明金矿矿矿石精煤厂和火试金分离试验室排放的矿渣能够在24小时内释放12%的可溶态硼,该矿渣是造成硼浓度异常的主要污染源。变玄武岩(硼含量为<3,000 mg/kg)只能是产生硼的次要污染源。废矿石中电气石、硬石膏、方解石和菱铁矿的存在不是尾矿产生大量可溶态硼的原因。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AMEC (2005) Geotechnical and environmental tailings closure assessment McIntyre tailings dam. AMEC America’s Limited Earth & Environmental Div, Lively, Ontario

    Google Scholar 

  • Annovitz LM, Grew ES (1996) Mineralogy, petrology, and geochemistry of boron: an introduction. In: Grew, ES, Anovitz, LM (eds) Boron mineralogy, petrology, and geochemistry. Rev Mineral 33:1–30

  • Appel PWU, Na-Oy L (2012) The borax method of gold extraction for small-scale miners. J Health Pollution 2:5–10

    Google Scholar 

  • Bateman R, Ayer JA, Dubé B Hamilton MA (2005) The Timmins–Porcupine gold camp, Northern Ontario: the anatomy of an archaean greenstone belt and its gold mineralization: discover Abitibi Initiative. Ontario Geological Survey Open File Rept 6158, accessible at: http://www.geologyontario.mndmf.gov.on.ca/mndmfiles/pub/data/imaging/OFR6158/OFR6158.pdf

  • Black JA, Barnum JB, Birge WJ (1993) An integrated assessment of the biological effects of boron to the rainbow trout. Chemosphere 26:1383–1413

    Article  Google Scholar 

  • Bugbee EE (1981) A textbook of fire assaying. Willey, New York City

    Google Scholar 

  • Cano-Reséndiz O, de la Rosa G, Cruz-Jiménez G, Gardea-Torresdey JL, Robinson BH (2011) Evaluating the role of vegetation on the transport of contaminants associated with a mine tailing using the Phyto-DSS. J Hazard Mater 189:472–478

    Article  Google Scholar 

  • Dionisiou NMT, Misopolinos ND (2006) Surface water quality—use of magnesia for boron removal from irrigation water. J Environ Qual 35:2222–2228

    Article  Google Scholar 

  • Dydo P, Turek M (2013) Boron transport and removal using ion-exchange membranes: a critical review. Desalination 310:2–8

    Article  Google Scholar 

  • Figen AK, Pişkin S (2010) Parametric investigation of anhydrous sodium metaborate (NaBO2) synthesis from concentrated tincal. Adv Powder Technol 21:513–520

    Article  Google Scholar 

  • Fyon JA, Crocket JH (1982) Gold exploration in the timmins district using field and lithogeochemical characteristics of carbonate alteration zones. Can Inst Min Metall Geol Can Gold Depos Spec 24:113–129

    Google Scholar 

  • Gemici Ü, Tarcan C, Helvaci C, Somay AM (2008) High arsenic and boron concentrations in groundwaters related to mining activity in the Bigadiç borate deposits (Western Turkey). Appl Geochem 23:2462–2476

    Article  Google Scholar 

  • Goldberg S, Suarez DL (2011) Influence of soil solution cation composition on boron adsorption by soils. Soil Sci 126:80–83

    Article  Google Scholar 

  • Graham ER (1957) The weathering of some boron-bearing materials. Soil Sci Soc Am 21:505–508

    Article  Google Scholar 

  • Guilbert JM, Park CF (2007) The geology of ore deposits. Waveland Press, Long Grove

    Google Scholar 

  • Hayashi S, Takahasi T, Kanehashi K, Kubota N, Kashiwakura S, Sakamoto T, Nagasaka T (2010) Chemical state of boron in coal fly ash investigated by focused-ion-beam time-of-flight secondary ion mass spectrometry (FIB-TOF-SIMS) and satellite-transition magic angle spinning nuclear magnetic resonance (STMAS NMR). Chemosphere 80:881–887

    Article  Google Scholar 

  • Health Canada (2012) Guidelines for Canadian drinking water quality—Summary Table. Water, air and climate change Bureau, healthy environments and consumer safety branch, Health Canada, Ottawa, ON; accessed 03 Jan 2014 at http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/2012-sum_guide-res_recom/index-eng.php

  • Hudson-Edwards KA, Jamieson HE, Lottermoser BG (2011) Mine wastes: past, present, future. Elements 7:375–380

    Article  Google Scholar 

  • Iwashita A, Sakaguchi Y, Nakajima T, Takanashi H, Ohki A, Kambara S (2005) Leaching characteristics of boron and selenium for various coal fly ashes. Fuel 84:479–485

    Article  Google Scholar 

  • Jamieson HE (2011) Geochemistry and mineralogy of solid mine waste: essential knowledge for predicting environmental impact. Elements 7:381–386

    Article  Google Scholar 

  • Kent PA (1988) Dec 15, 1988 Memo from Noranda Sales Corp to Mr. Peter Rowlandson about contract renewal, GoldCorp Archives, Timmins, ON, Canada

  • Leeman WP, Sisson VB (1996) Geochemistry of boron and its implications for crustal and mantle processes. In: Grew, ES, Anovitz, LM (eds) Boron mineralogy, petrology, and geochemistry, Rev Mineral 33:645–695

  • Lottermoser BG (2010) Mine Wastes: characterization, treatment, environmental impacts, 3rd edn. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Marsden J, House I (2006) The Chemistry of Gold Extraction. 2nd Edit, Soc for Mining, Metallurgy, and Exploration (SME), Littleton, CO, USA

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Mine Manager Monthly Reports (1984) Monthly reports written by various mine managers to the corporate head office that detail the development and production activity of the various Pamour Porcupine mines and mills. GoldCorp Archives, Timmins

    Google Scholar 

  • Munsell® Color Charts (2010) Year 2000 Revised Washable Edition, GretagMacbeth, New Windsor, NY

  • Nable RO, Bañuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 193:181–198

    Article  Google Scholar 

  • Narukawa T, Riley KW, French DH, Takatzu A, Chiba K (2003) Investigation into the relationship between major and minor element contents and particle size and leachability of boron in fly ash from coal fuel thermal power plants. J Environ Monit 5:831–836

    Article  Google Scholar 

  • Norgate T, Haque N (2012) Using life cycle assessment to evaluate some environmental impacts of gold production. J Clean Prod 29–30:53–63

    Article  Google Scholar 

  • North American Datum of 1983 (1989) In Schwarz CR (ed) NOAA professional paper 2, National Geodetic Survey (NGS), National Oceanic and Atmospheric Administration. U.S. Government Printing Office

  • Payne D (1992) Geochemistry of boron in selected gold deposits from the western United States. MS thesis, Eastern Washington Univ, Cheney, WA, USA

  • Senior LA, Sloto RA (2006) Arsenic, boron, and fluoride concentrations in ground water in and near diabase intrusions, Newark Basin, Southeastern Pensylvania. USGS SI Report 5261, Reston, VA, USA

  • Shibli A, Srebnik M (2005) Environmental aspects of boron. In: Abu Ali H (ed) Contemporary aspects of boron: Chemistry and biological applications, Studies Inorganic Chemistry 22:552–593

  • Paliewicz CC, Sirbescu, M-LC, van Hees EH, Sulatycky T (2012) Boron contamination at the McIntyre tailings, Timmins, Ontario. In: V.M. Goldschmidt Conference Abstract, Mineral Magazine 75: 2380

  • Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. In: Grew ES, Anovitz LM (eds) Boron mineralogy, petrology, and geochemistry. Reviews mineralogy 33:559–664

  • Slack JF, Trumbull RB (2011) Tourmaline as a recorder of ore-forming processes. Elements 7:321–326

    Article  Google Scholar 

  • Smith GI, Medrano MD (1996) Continental borate deposits of Cenozoic age. In: Grew ES, Anovitz LM (eds) Boron mineralogy, petrology, and geochemistry. Reviews mineralogy 33:263-280

  • Stevens CJ, Sulatycky T, Small CA, Götz L, Taillefer RT, Burke LE (2013) Planning for closure—Porcupine Gold Mines’ mine closure program. Accessed 3 Jan 2014 at https://circle.ubc.ca/bitstream/handle/2429/45306/Stevens_C_J_et_al_BC_Mine_2013.pdf?sequence=1

  • USEPA (2006) Boric Acid/Sodium Borate Salts: HED chapter of the tolerance reassessment eligibility decision document (TRED), Washington DC, USA

  • USEPA (US Environmental Protection Agency) (2008) Boron. Ch 3, Regulatory determinations support document for selected contaminants from CCL 2, EPA Report 815–R–08–012, Washington DC, USA

  • Walker CT (1975) Geochemistry of boron. Benchmark papers in geology volume 23, Wiley, Toronto, ON, Canada

  • Watanabe T (1975) Geochemical cycle and concentration of boron in the Earth’s crust. In: Walker CT (ed) Geochemistry of boron, benchmark papers in geology 23. Wiley, Toronto, pp 167–178

    Google Scholar 

  • Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392

    Article  Google Scholar 

  • WHO (2009) Boron in drinking water, background document for development of WHO guidelines for drinking-water quality. WHO Press, World Health Organization

    Google Scholar 

  • Williams SJ, Arsenault MA, Buczkowski BJ, Reid JA, Flocks JG, Kulp MA, Penland S, Jenkins CJ (2006) Surficial sediment character of the Louisiana offshore continental shelf region: a GIS compilation, USGS Open File Report 2006–1195; accessed 03 Jan 2014 at http://pubs.usgs.gov/of/2006/1195/index.htm

  • Wolska J, Bryjak M (2013) Methods for boron removal from aqueous solutions–a review. Desalination 310:18–24

    Article  Google Scholar 

  • Yoshinaga J, Kida A, Nakasugi O (2011) Statistical approach for the source identification of boron in leachates from industrial landfills. J Mater Cycles Waste Manag 3:60–65

    Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers for their thoughtful comments and suggestions. A grant from the Office of Research and Sponsored Programs at Central Michigan University (CMU) partially supported the field and analytical work. We also thank Goldcorp Canada Ltd.–Porcupine Gold Mines in Timmins, Ontario for funding part of this project and for access to the McIntyre tailings and Pamour Mine records. Joe Landers, Ron Millions, Marc Talbot, and Trevor Yeoman at current and former gold refineries and assay labs in Timmins are greatly thanked for providing slag samples. Special thanks to Jim Student for the LA-ICP-MS data collection, Phil Oshel for helping with the SEM analysis, and CMU students Jamie Hockemeyer, John Bay, Isabee Demski, Lewis Matthews, and Amanda VanHaitsma for field work, sample preparation, and characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona-Liza C. Sirbescu.

Appendices

Appendix 1

See Table 2.

Table 2 Boron concentration in tailings leachates and ground water samples from McIntyre Dam 5

Appendix 2

See Table 3.

Table 3 Timmins mine tailings–wet sieve data sheet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paliewicz, C.C., Sirbescu, ML.C., Sulatycky, T. et al. Environmentally Hazardous Boron in Gold Mine Tailings, Timmins, Ontario, Canada. Mine Water Environ 34, 162–180 (2015). https://doi.org/10.1007/s10230-014-0284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0284-6

Keywords

Navigation