Skip to main content
Log in

Selenium Leaching Kinetics and In situ Control

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Selenium leached from coal tailings and spoil is a challenge for mining operations in southern West Virginia. Selenium discharges are not supposed to exceed 5 μg/L, and yet are commonly in the range of 10–25 μg/L. Once in the selenate form, selenium removal can be extremely difficult and expensive, particularly in the narrow valleys and highly variable flow regimes of southern West Virginia. This study reports on the first 96 weeks of a leaching study. Selenium leached at the rate of 0.06% of the extant selenium pool per day. After 96 weeks, about 35% of the original, potentially mobile selenium had leached. While sulfur was far more abundant, its leach rate was about 10% of the selenium rate. Iron oxyhydroxide was found to reduce the concentration of dissolved selenium by about 70%, which indicates that selenite is the dominant, mobile selenium species during initial weathering, and that selenium could be controlled at its source, through special handling and treatment of selenium-rich rock units. Iron oxyhydroxide kept selenium near the regulatory limit of 5 μg/L throughout the experiment.

Resumen

La lixiviación de selenio a partir de las colas o residuos de carbón es un desafío para las operaciones mineras en el sur de West Virginia. Las descargas de selenio no deberían exceder los 5 μg/L pero usualmente están en el rango de 10 a 25 μg/L. Una vez bajo la forma de seleniato, la remoción de selenio puede ser extremadamente dificultosa y cara, particularmente en los valles angostos y de regímenes de flujos altamente variables del sur de West Virginia. Este estudio reporta los resultados de 96 semanas de lixiviación. El selenio fue lixiviado a una velocidad de 0,06% por día. Después de 96 semanas, aproximadamente el 35% del selenio móvil original había sido lixiviado. Aunque el azufre era mucho más abundante, su velocidad de lixiviación fue aproximadamente el 10% de la del selenio. Los oxohidroxos de hierro reducen la concentración de selenio disuelto en cerca del 70%, lo que indica que selenito es la especie dominante dentro de las especies móviles al inicio de y que el selenio puede ser controlado en su origen a través del tratamiento y manejo adecuado de las rocas ricas en selenio. Los oxohidroxos de hierro mantuvieron la concentración del selenio cerca del límite regulatorio de 5 μg/L durante todo el experimento

硒淋滤动力学特征与现场淋滤试验控制

由矸石和尾矿淋滤引起的矿井废水硒污染是美国维吉尼亚 (Virginia) 西南煤矿不得不面对的挑战。根据美国废水排放要求, 硒的排放浓度不能超过5 μg/L, 而研究区矿井废水中硒的浓度可达10-25 μg/L。硒一旦转化成硒酸盐, 尤其是废水进入维吉尼亚 (Virginia) 西南狭窄山谷的湍流中后, 硒的去除将变得极为困难和昂贵。淋滤研究表明, 在最初的96周淋滤过程中, 硒的淋滤速度为每天0.06%; 在96周之后, 原矸石和尾矿中具有潜在活性的硒滤出比例约35%; 然而, 此时硫的含量仍非常高, 硫的滤出速度仅是硒滤出速度的10%。氢氧化铁可以使溶解硒的浓度减少大约70%; 这表明矸石和尾矿在风化初期滤出的硒以具有活性的亚硒酸盐为主, 从而使我们能够通过对富硒岩石早期专门处理实现硒的源头控制。在试验期间, 氢氧化铁使硒浓度始终保持在规定的5 μg/L以内。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anonymous (2007) Identification and assessment of selenium and nitrogen treatment technologies and best management practices. Nitrogen and selenium management program working group. San Diego

  • Baur I, Johnson CA (2003) Sorption of selenite and selenate to cement minerals. Environ Sci Technol 37:3442–3447

    Article  Google Scholar 

  • Coleman L, Bragg LJ, Finkelman RB (1993) Distribution and mode of occurrence of selenium in US coals. Environ Geochem Health 15:215–227

    Article  Google Scholar 

  • Diehl SF, Goldhaber MB, Koenig AE, Tuttle MLW, Ruppert LF (2005) Concentration of arsenic, selenium, and other trace elements in pyrite in Appalachian coals of Alabama and Kentucky. Proc, National Meeting of the American Soc of Mining and Reclamation, http://www.asmr.us/Publications/Conference%20Proceedings/2005/0283-Diehl-CO-2.pdf, pp 283–301

  • Elrashidi MA, Adriano DC, Workman SM, Lindsay WL (1987) Chemical equilibria of selenium in soils: a theoretical development. Soil Sci 144:141–152

    Article  Google Scholar 

  • Elrashidi MA, Adriano DC, Lindsay WL (1989) Solubility, speciation, and transformations of selenium in soils. Soil Science Soc of America Spec Publ 23. American Soc of Agronomy, Madison, pp 51–63

    Google Scholar 

  • Huggins FE, Senior CL, Chu P, Ladwig K, Huffman GP (2007) Selenium and arsenic speciation in fly ash from full-scale coal-burning utility plants. Environ Sci Technol 41:3284–3289

    Article  Google Scholar 

  • Hyun S, Burns PE, Murarka I, Lee LS (2006) Selenium (IV) and (VI) sorption by solid surrounding fly ash management facilities. Vadose Zone J 5:1110–1118

    Article  Google Scholar 

  • Merrill DT, Maroney PM, Parker DS (1985) Trace element removal by coprecipitation with amorphous iron oxyhydroxide: engineering evaluation. Electric Power Research Institute Coal Combustion Systems Division, EPRI Report CS 4087, Palo Alto

  • Mullennex RH (2005) Stratigraphic distribution of selenium in upper Kanawha-lower Allegheny formation strata at a location in southern West Virginia. Poster, 23rd Annual International Pittsburgh Coal Conf, Pittsburgh

  • Ostle B (1963) Statistics in research. 2nd Edit, Ch 11. The Iowa State Univ Press, Ames

    Google Scholar 

  • Pumure I, Renton JJ, Smart RB (2010) Ultrasonic extraction of arsenic and selenium from rocks associated with mountaintop removal/valley fills coal mining: estimation of bioaccessible concentrations. Chemosphere 78:1295–1300

    Article  Google Scholar 

  • Quaranta JD, Tolikonda R (2010) Nonwoven geotextile performance with coarse and fine coal refuse. Annual MSHA dam safety seminar, US Dept of Labor, Mine Safety and Health Admin, US Mine Academy, April 28, 2010, Beaver

  • Roy M (2005) A detailed sequential extraction study of selenium in coal and coal-associated strata from a coal mine in West Virginia. MS Thesis, Dept of Geology and Geography, West Virginia Univ, Morgantown

  • Su C, Suarez DL (2001) Selenate and selenite sorption on iron oxides: an infrared and electrophoretic study. Soil Sci Soc Am J 64:101–111

    Article  Google Scholar 

  • Twidwell LG, McCloskey J, Miranda P, Gale M (2000) Technologies and potential technologies for removing selenium from process and mine wastewater, Proc, Minor Elements, Soc of Mining Engineers, Salt Lake City. pp 53–66

  • Vesper DJ, Bryant G, Ziemkiewicz PF (2004) A preliminary study on the speciation of selenium in a West Virginia watershed. Proc, 21st annual meeting of the american soc of mining and reclamation, Morgantown. pp 1950–1959

  • Vesper DJ, Roy M, Rhoads CJ (2008) Selenium distribution and mode of occurrence in the Kanawha formation, southern West Virginia, USA. Int J Coal Geol 73:237–249

    Article  Google Scholar 

  • Zhang P, Sparks DL (1990) Kinetics of selenate and selenite adsorption/desorption at the goethite/water interface. Environ Sci Technol 24:1848–1856

    Article  Google Scholar 

Download references

Acknowledgments

The West Virginia Water Research Institute wishes to acknowledge the United States Department of the Interior, Office of Surface Mining for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Ziemkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziemkiewicz, P.F., O’Neal, M. & Lovett, R.J. Selenium Leaching Kinetics and In situ Control. Mine Water Environ 30, 141–150 (2011). https://doi.org/10.1007/s10230-011-0154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-011-0154-4

Keywords

Navigation