Skip to main content
Log in

Discrete Morse Theory for Computing Cellular Sheaf Cohomology

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Sheaves and sheaf cohomology are powerful tools in computational topology, greatly generalizing persistent homology. We develop an algorithm for simplifying the computation of cellular sheaf cohomology via (discrete) Morse theoretic techniques. As a consequence, we derive efficient techniques for distributed computation of (ordinary) cohomology of a cell complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. That is, the complexity of composing two \(d \times d\) matrices with \(\mathbf{R}\)-entries is \(\text {O}(d^\omega )\).

  2. When striving for greater generality, one replaces this requirement by the following local finiteness hypothesis on the covering relation: each \(x \in X\) can have only finitely many y so that \(y \prec x\) or \(x \prec y\).

  3. In principle, any method for constructing acyclic partial matchings on graded posets will suffice, provided that it ensures sheaf compatibility by only matching cell pairs whose restriction maps are invertible.

References

  1. R. Adler, The Geometry of Random Fields, (Wiley, 1981 and reprinted by SIAM, 2010).

  2. R. Adler and J.E. Taylor, Random Fields and Geometry (Springer, 2009).

  3. P. Alexandroff. Über den allgemeinen Dimensionsbegriff und seine Beziehungen zur elementaren geometrischen Anschauung. Math. Ann., 98, 617–635 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  4. Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and Pl. Pilarczyk, A Database Schema for the Analysis of Global Dynamics of Multiparameter Systems, SIAM J. Appl. Dyn. Syst., 8(3), 757–789 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Baryshnikov and R. Ghrist, Target enumeration via Euler characteristic integrals, SIAM J. Appl. Math., 70(3), 825–844 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Baryshnikov and R. Ghrist, Euler integration over definable functions, Proc. Natl. Acad. Sci. USA 107(21), 9525–9530 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Basu, A complexity theory of constructible functions and sheaves, Found. Comput. Math., 15(1), 199–279 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Batzies and V. Welker. Discrete Morse theory for cellular resolutions. J. Reine Angew. Math., 543:147–168 (2002).

    MathSciNet  MATH  Google Scholar 

  9. L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Amer. Math. Soc. (N.S.) 21(1), 1–46 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fund. Math. 35, 217–234 (1948).

    MathSciNet  MATH  Google Scholar 

  11. G. E. Bredon. Sheaf Theory, (Springer, 1997)

  12. D. Burghelea and T. K. Dey. Topological persistence for circle-valued maps. Discrete and Computational Geometry, 50(1):1–30 (2011).

    MathSciNet  MATH  Google Scholar 

  13. G. Carlsson. Topology and data. Bull. Amer. Math. Soc. (N.S.), 46(2), 255–308 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Carlsson, V. de Silva, and D. Morozov. Zigzag persistent homology and real-valued functions. Proc. Ann. Sympos. Comp. Geom., 247–256 (2009).

  15. M. K. Chari. On discrete Morse functions and combinatorial decompositions. Discrete Math., 217(1–3) 101–113 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Curry. Sheaves, cosheaves and applications. arXiv:1303.3255[math.AT](2013).

  17. J. Curry, R. Ghrist, and M. Robinson. Euler calculus and its applications to signals and sensing. Proc. Sympos. Appl. Math. 70, 75–145 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. de Silva and R. Ghrist. Coordinate-free coverage in sensor networks with controlled boundaries via homology, Intl. J. Robotics Research 25, 1205–1222 (2006).

    Article  MATH  Google Scholar 

  19. V. de Silva and R. Ghrist. Coverage in sensor networks via persistent homology, Algebr. Geom. Topol., 7, 339–358 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. de Silva, D. Morozov, and M. Vejdemo-Johansson. Persistent Cohomology and Circular Coordinates. Discrete Comput. Geom., 45(4), 737–759 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  21. V. de Silva, E. Munch, and A. Patel. Categorified Reeb graphs. arXiv:1501.04147[cs.CG], (2015).

  22. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete Comput. Geom., 28(4):511–533 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Edelsbrunner, J. Harer, Computational Topology. An Introduction, (American Mathematical Society, 2010).

  24. M. Farber. Topological Complexity of Motion Planning. Discrete Comput. Geom. 29, 211–221 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Farber. Collision free motion planning on graphs. In Algorithmic Foundations of Robotics IV, (M. Erdmann, D. Hsu, M. Overmars, A. F. van der Stappen eds.), Springer, 2005, pp. 123–138.

  26. R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134(1), 90–145 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Ghrist, Configuration spaces, braids, and robotics. Lecture Note Series, Inst. Math. Sci., NUS, vol. 19, World Scientific, 263–304 (2010).

  28. R. Ghrist, Elementary Applied Topology, (Createspace, 2014).

  29. R. Ghrist and Y. Hiraoka. Sheaves for network coding. In Proc. NOLTA: Nonlinear Theory and Applications, 266–269, (2011).

  30. R. Ghrist and S. Krishnan. A topological max-flow-min-cut theorem. In Proc. Global Sig. Inf. Proc., 815–818 (2013).

  31. J. A. Goguen. Sheaf semantics for concurrent interacting objects. Mathematical Structures in Computer Science, 2(2) 159–191, (1992).

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Harker, K. Mischaikow, M. Mrozek, and V. Nanda. Discrete Morse theoretic algorithms for computing homology of complexes and maps. Found. Comput.l Math. 14(1), 151–184 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Haynes, F. Cohen, and D. Koditschek. Gait Transitions for Quasi-Static Hexapedal Locomotion on Level Ground. in International Symposium of Robotics Research, Springer, 2011, pp 105–121.

  34. T. Kaczynski, K. Mischaikow, and M. Mrozek. Computational Homology (Springer-Verlag, 2004).

  35. D. Kozlov. Discrete Morse theory for free chain complexes. C. R. Math., 340(12), 867–872 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Krishnan. Flow-cut duality for sheaves on graphs. arXiv:1409.6712[math.AT], (2014).

  37. J. Leray. Sur la forme des espaces topologiques et sur les points fixes des représentations. J. Math. Pures Appl., 24(9), 95–167 (1945).

    MathSciNet  MATH  Google Scholar 

  38. R. H. Lewis and A. Zomorodian. Multicore homology. arXiv:1407.2275 [cs.CG], (2014).

  39. R. MacPherson and A. Patel. Private communication, 2013.

  40. J. McCleary. A User’s Guide to Spectral Sequences, (Cambridge University Press, 2001).

  41. K. Mischaikow and M. Mrozek, Conley Index Theory. In Handbook of Dynamical Systems II: Towards Applications, (B. Fiedler, ed.) North-Holland, 2002, pp 393–460.

  42. K. Mischaikow and V. Nanda. Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput. Geom., 50(2), 330–353 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Mrozek and B. Batko. The coreduction homology algorithm. Discrete Comput. Geom., 41(1), 96–118 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Munkres. Elements of Algebraic Topology. (Benjamin/Cummings, 1984).

  45. S. Ramanan. Global Calculus. (American Mathematical Society, 2005).

  46. M. Robinson. The Nyquist theorem for cellular sheaves. Proc. Sampling Theory and Applications, 2013, pp 293–296.

  47. P. Schapira. Operations on constructible functions. J. Pure Appl. Algebra, 72(1), 83–93 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  48. P. Schapira. Tomography of constructible functions. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer, 1995, pp. 427–435.

  49. G. Segal. Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math., 34, 105–112, (1968).

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Shepard. A Cellular Description of the Derived Category of a Stratified Space. Brown University PhD Thesis, 1985.

  51. E. Sköldberg. Morse theory from an algebraic viewpoint. Trans. Amer. Math. Soc., 358(1), 115–129 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  52. E. H. Spanier. Algebraic Topology. (McGraw-Hill, 1966).

  53. M. Vybornov. Sheaves on triangulated spaces and Koszul duality. arXiv:math/9910150[math.AT], 2000.

  54. C. A. Weibel. An Introduction to Homological Algebra, (Cambridge University Press, 1995).

  55. J. H. C. Whitehead. Combinatorial homotopy I. Trans. Amer. Math. Soc., 55(5), 453–496 (1949).

    MathSciNet  MATH  Google Scholar 

  56. A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete Comput. Geom., 33(2), 249–274 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Zomorodian and G. Carlsson. Localized homology. Comput. Geom., 41(3), 126–148, (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by federal contracts FA9550-12-1-0416, FA9550-09-1-0643, and HQ0034-12-C-0027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidit Nanda.

Additional information

Communicated by Gunnar Carlsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curry, J., Ghrist, R. & Nanda, V. Discrete Morse Theory for Computing Cellular Sheaf Cohomology. Found Comput Math 16, 875–897 (2016). https://doi.org/10.1007/s10208-015-9266-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9266-8

Keywords

Mathematics Subject Classification

Navigation