Skip to main content
Log in

Skewness-adjusted bootstrap confidence intervals and confidence bands for impulse response functions

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

Inference on impulse response functions from vector autoregressive models is commonly done using bootstrap methods. These methods can be inaccurate in small samples and for persistent processes. This article investigates the construction of skewness-adjusted confidence intervals and joint confidence bands for impulse responses with improved small sample performance. We suggest to adjust the skewness of the bootstrap distribution of the autoregressive coefficients before the impulse response functions are computed. Using extensive Monte Carlo simulations, the approach is shown to improve the coverage accuracy in small- and medium-sized samples and for unit-root processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Berkowitz and Kilian (2000, p. 30) conjecture that the poor performance of the bootstrap confidence intervals in the presence of unit roots and roots close to unity is due to small sample bias. The evidence presented in this article suggests that the skewness plays an important role.

  2. Wolf and Wunderli (2015) propose their method for prediction regions, but this can also be adapted to confidence regions for IRFs, see Lütkepohl et al. (2015a).

  3. The AIC has a relatively high accuracy in identifying the correct lag order in finite samples (Lütkepohl 1985; Kilian 2001).

  4. Simulations of DGPs with higher lag orders than considered here or by Kilian (1998b) indicate that the AICc might provide to low estimated lag orders and the AIC might be preferable. Research into the optimal information criterion for bootstrap confidence intervals and bands at different sample sizes may be helpful.

  5. Note that the 100% coverage in the initial period in the third quadrant is due to this IRF being restricted to zero by the Cholesky decomposition, which is in accordance with the assumed DGP.

  6. This supposes that we equally dislike positive and negative deviations from the nominal coverage level. Arguably, too low coverages might be considered as a more severe violation of the idea underlying the construction of confidence intervals.

References

  • Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Basawa, I.V., Mallik, A.K., Cormick, W.P., Reeves, J.H., Taylor, R.L.: Bootstrapping unstable first-order autoregressive processes. Ann. Stat. 19, 1098–1101 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Benkwitz, A., Neumann, M.H., Lütekpohl, H.: Problems related to confidence intervals for impulse responses of autoregressive processes. Econom. Rev. 19(1), 69–103 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Berkowitz, J., Kilian, L.: Recent developments in bootstrapping time series. Econom. Rev. 19(1), 1–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Bose, A.: Edgeworth correction by bootstrap in autoregressions. Ann. Stat., 1709–1722 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Efron, B.: Nonparametric standard errors and confidence intervals. Can. J. Stat. 9, 139–172 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Efron, B., Tibshirani, R.: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1(1), 54–75 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Grabowski, D., Staszewska-Bystrova, A., Winker, P.: Generating prediction bands for path forecasts from SETAR models. Stud. Nonlinear Dyn. Econom. 21(5) (2017)

  • Hall, P.: The Bootstrap and Edgeworth Expansion. Springer, New York (1992)

    Book  MATH  Google Scholar 

  • Hurvich, C.M., Tsai, C.L.: Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Hurvich, C.M., Tsai, C.L.: A corrected Akaike information criterion for vector autoregressive model selection. J. Time Ser. Anal. 14, 272–279 (1993)

    MathSciNet  MATH  Google Scholar 

  • Inoue, A., Kilian, L.: Bootstrapping autoregressive processes with possible unit roots. Econometrica 70(1), 377–391 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Inoue, A., Kilian, L.: The continuity of the limit distribution in the parameter of interest is not essential for the validity of the bootstrap. Econom. Theory 19(6), 944–961 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Inoue, A., Kilian, L.: Inference on impulse response functions in structural VAR models. J. Econom. 177(1), 1–13 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Inoue, A., Kilian, L.: Joint confidence sets for structural impulse responses. J. Econom. 192(2), 421–432 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Kilian, L.: Small-sample confidence intervals for impulse response functions. Rev. Econ. Stat. 80(2), 218–230 (1998a)

    Article  Google Scholar 

  • Kilian, L.: Accounting for lag order uncertainty in autoregressions: the endogenous lag order bootstrap algorithm. J. Time Ser. Anal. 19(5), 531–548 (1998b)

    Article  MATH  Google Scholar 

  • Kilian, L.: Finite-sample properties of percentile and percentile-t bootstrap confidence intervals for impulse responses. Rev. Econ. Stat. 81(4), 652–660 (1999)

    Article  Google Scholar 

  • Kilian, L.: Impulse response analysis in vector autoregressions with unknown lag order. J. Forecast. 20, 161–179 (2001)

    Article  Google Scholar 

  • Kilian, L., Lütkepohl, H.: Structural Vector Autoregressive Analysis. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  • Kim, J.H.: Bias-corrected bootstrap prediction regions for vector autoregression. J. Forecast. 23(2), 141–154 (2004)

    Article  Google Scholar 

  • Lütkepohl, H.: Comparison of criteria for estimating the order of a vector autoregressive process. J. Time Ser. Anal. 6, 35–52 (1985)

    Article  MathSciNet  Google Scholar 

  • Lütkepohl, H.: Asymptotic distributions of impulse response functions and forecast error variance decompositions of vector autoregressive models. Rev. Econ. Stat. 72(1), 116–125 (1990)

    Article  Google Scholar 

  • Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  • Lütkepohl, H., Staszewska-Bystrova, A., Winker, P.: Comparison of methods for constructing joint confidence bands for impulse response functions. Int. J. Forecast. 31(3), 782–798 (2015)

    Article  Google Scholar 

  • Lütkepohl, H., Staszewska-Bystrova, A., Winker, P.: Confidence bands for impulse responses: Bonferroni vs. Wald. Oxf. Bull. Econ. Stat. 77, 800–821 (2015)

    Article  Google Scholar 

  • Pope, A.L.: Biases of estimators in multivariate non-Gaussian autoregressions. J. Time Ser. Anal. 11(3), 249–258 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Sims, C.A., Zha, T.: Error bands for impulse responses. Econometrica 67(5), 1113–1155 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Staszewska, A.: Representing uncertainty about response paths: the use of heuristic optimisation methods. Comput. Stat. Data Anal. 52(1), 121–132 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Staszewska-Bystrova, A., Winker, P.: Constructing narrowest pathwise bootstrap prediction bands using Threshold Accepting. Int. J. Forecast. 29(2), 221–233 (2013)

    Article  Google Scholar 

  • Staszewska-Bystrova, A., Winker, P.: Measuring forecast uncertainty of corporate bond spreads by Bonferroni-type prediction bands. Cent. Eur. J. Econ. Model. Econom. 2, 89–104 (2014)

    MATH  Google Scholar 

  • Stine, R.A.: Estimating properties of autoregressive forecasts. J. Am. Stat. Assoc. 82(400), 1072–1078 (1987)

    Article  MathSciNet  Google Scholar 

  • Sugiura, N.: Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun. Stat. A7, 13–26 (1978)

    Article  MATH  Google Scholar 

  • Wolf, M., Wunderli, D.: Bootstrap joint prediction regions. J. Time Ser. Anal. 36(3), 352–376 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Grabowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We are indebted to Lutz Kilian and Helmut Lütkepohl for helpful comments on an earlier draft of this paper. We also wish to thank participants of the 2018 European Summer Meeting of the Econometric Society and of the Jahrestagung des Vereins für Socialpolitik 2018 for helpful discussions. The authors are responsible for all remaining shortcomings. Support from the National Science Center, Poland (NCN) through MAESTRO 4: DEC-2013/08/A/HS4/00612 is gratefully acknowledged.

Appendix

Appendix

See Tables 7, 8, 9, 10, 11, 12, 13, 14, and 15

Table 7 Mean coverage frequencies (in %) for nominal 95% confidence intervals over different parameter settings for \(\alpha _{11}\), over periods \(h{=}0,\ldots ,10\) and over the four impulse responses in a two-dimensional VAR with an unknown lag order
Table 8 Root mean squared coverage errors (RMSCEs) (in percentage points) for nominal 95% confidence intervals over different parameter settings for \(\alpha _{11}\), over periods \(h{=}0,\ldots ,10\) and over the four impulse responses in a two-dimensional VAR with an unknown lag order
Table 9 Mean widths for nominal 95% confidence intervals over different parameter settings for \(\alpha _{11}\), over periods \(h{=}0,\ldots ,10\) and over the four impulse responses in a two-dimensional VAR with an unknown lag order
Table 10 Mean coverage frequencies (in percent) for nominal 95% confidence intervals over different parameter settings for \(\alpha _{11}\), over periods \(h{=}0,\ldots ,10\) and over the four impulse responses in a two-dimensional VAR with chi-squared distributed errors
Table 11 Root mean squared coverage errors (RMSCEs) (in percentage points) for nominal 95% confidence intervals over different parameter settings for \(\alpha _{11}\), over periods \(h{=}0,\ldots ,10\) and over the four impulse responses in a two-dimensional VAR with chi-squared distributed errors
Table 12 Mean widths for nominal 95% confidence intervals over different parameter settings for \(\alpha _{11}\), over periods \(h{=}0,\ldots ,10\) and over the four impulse responses in a two-dimensional VAR with chi-squared distributed errors
Table 13 Mean coverage frequencies (in percent) for nominal 95% joint confidence bands over different parameter settings for \(\alpha _{11}\) and over the four impulse responses in a two-dimensional VAR with an unknown lag order
Table 14 Root mean squared coverage errors (RMSCEs) (in percentage points) for nominal 95% joint confidence bands over different parameter settings for \(\alpha _{11}\) and over the four impulse responses in a two-dimensional VAR with an unknown lag order
Table 15 Mean widths for nominal 95% joint confidence bands over different parameter settings for \(\alpha _{11}\) and over the four impulse responses in a two-dimensional VAR with an unknown lag order

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabowski, D., Staszewska-Bystrova, A. & Winker, P. Skewness-adjusted bootstrap confidence intervals and confidence bands for impulse response functions. AStA Adv Stat Anal 104, 5–32 (2020). https://doi.org/10.1007/s10182-018-00347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-018-00347-9

Keywords

JEL Classifications

Navigation