Skip to main content
Log in

Estimation and variable selection for partial functional linear regression

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

We propose a new estimation procedure for estimating the unknown parameters and function in partial functional linear regression. The asymptotic distribution of the estimator of the vector of slope parameters is derived, and the global convergence rate of the estimator of unknown slope function is established under suitable norm. The convergence rate of the mean squared prediction error for the proposed estimators is also established. Based on the proposed estimation procedure, we further construct the penalized regression estimators and establish their variable selection consistency and oracle properties. Finite sample properties of our procedures are studied through Monte Carlo simulations. A real data example about the real estate data is used to illustrate our proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aneirosa, G., Ferraty, F., Vieu, P.: Variable selection in partial linear regression with functional covariate. Statistics 49, 1322–1347 (2015)

    Article  MathSciNet  Google Scholar 

  • Brunel, E., Roche, A.: Penalized contrast estimation in functional linear models with circular data. Statistics 49, 1298–1321 (2015)

    Article  MathSciNet  Google Scholar 

  • Cai, T.T., Hall, P.: Prediction in functional linear regression. Ann. Stat. 34, 2159–2179 (2006)

    Article  MathSciNet  Google Scholar 

  • Cardot, H., Ferraty, F., Sarda, P.: Spline estimators for the functional linear model. Stat. Sin. 13, 571–591 (2003)

    MathSciNet  MATH  Google Scholar 

  • Cardot, H., Mas, A., Sarda, P.: CLT in functional linear models. Probab. Theory Relat. Fields 138, 325–361 (2007)

    Article  MathSciNet  Google Scholar 

  • Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  • Fan, J., Lv, J.: Non-concave penalized likelihood with np-dimensionality. IEEE Trans. Inf. Theory 57, 5467–5484 (2011)

    Article  Google Scholar 

  • Fan, J., Xue, L., Zou, H.: Strong oracle optimality of folded concave penalized estimation. Ann. Stat. 42, 819–849 (2014)

    Article  MathSciNet  Google Scholar 

  • Frank, I., Friedman, J.: A statistical view of some chemometrics regression tools (with discussion). Technometrics 35, 109–135 (1993)

    Article  Google Scholar 

  • Hall, P., Horowitz, J.L.: Methodology and convergence rates for functional linear regression. Ann. Stat. 35, 70–91 (2007)

    Article  MathSciNet  Google Scholar 

  • Hsing, T., Eubank, R.: Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. Wiley, New York (2015)

    Book  Google Scholar 

  • Liang, H., Li, R.: Variable selection for partially linear models with measurement errors. J. Am. Stat. Assoc. 104, 234–248 (2009)

    Article  MathSciNet  Google Scholar 

  • Lv, J., Fan, J.: A unified approach to model selection and sparse recovery using regularized least squares. Ann. Stat. 37, 3498–3528 (2009)

    Article  MathSciNet  Google Scholar 

  • Ramsay, J.O., Silverman, B.W.: Applied Functional Data Analysis: Methods and Case Studies. Springer, New York (2002)

    Book  Google Scholar 

  • Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer, New York (2005)

    Book  Google Scholar 

  • Reiss, P.T., Ogden, R.T.: Functional generalized linear models with images as predictors. Biometrics 66, 61–69 (2010)

    Article  MathSciNet  Google Scholar 

  • Shin, H.: Partial functional linear regression. J. Stat. Plan. Inference 139, 3405–3418 (2009)

    Article  MathSciNet  Google Scholar 

  • Shin, H., Lee, M.H.: On prediction rate in partial functional linear regression. J. Multivar. Anal. 103, 93–106 (2012)

    Article  MathSciNet  Google Scholar 

  • Tang, Q.: Estimation for semi-functional linear regression. Statistics 49, 1262–1278 (2015)

    Article  MathSciNet  Google Scholar 

  • Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  • Wang, M., Wang, X.: Adaptive Lasso estimators for ultrahigh dimensional generalized linear models. Stat. Prob. Lett. 89, 41–50 (2014)

    Article  MathSciNet  Google Scholar 

  • Zhang, C.H.: Nearly unbiased variable selection under mini-max concave penalty. Ann. Stat. 38, 894–942 (2010)

    Article  Google Scholar 

  • Zhang, D., Lin, X., Sowers, M.F.: Two-stage functional mixed models for evaluating the effect of longitudinal covariate profiles on a scalar outcome. Biometrics 63, 351–362 (2007)

    Article  MathSciNet  Google Scholar 

  • Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418–1429 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Social Science Foundation of China (16BTJ019), the Humanities and Social Science Foundation of Ministry of Education of China (14YJA910004) and Natural Science Foundation of Jiangsu Province of China (Grant No. BK20151481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

In this section, let \(C>0\) denote a generic constant of which the value may change from line to line. For a matrix \(A=(a_{ij})\), set \(\Vert A\Vert _{\infty }=\max _{i}\sum _{j}|a_{ij}|\) and \(|A|_{\infty }=\max _{i,j}|a_{ij}|\). For a vector \(v=(v_{1},\ldots ,v_{k})^{T}\), set \(\Vert v\Vert _{\infty }=\sum _{j=1}^{k}|v_{j}|\) and \(|v|_{\infty }=\max _{1\le j\le k}|v_{j}|\). Denote \(W_{l}=\sum _{j=1}^{\infty }\gamma _{j}\xi _{lj}\), \(\tilde{W}_{i}=W_{i}-\frac{1}{n}\sum _{l=1}^{n}W_{l}\tilde{\xi }_{li}\), \(\tilde{\varepsilon }_{i}=\varepsilon _{i}-\frac{1}{n}\sum _{l=1}^{n}\varepsilon _{l}\tilde{\xi }_{li}\) and \(\tilde{W}=(\tilde{W}_{1},\ldots ,\tilde{W}_{n})^{T}\), \(\tilde{\varepsilon }=(\tilde{\varepsilon }_{1},\ldots ,\tilde{\varepsilon }_{n})^{T}\). Then

$$\begin{aligned} \hat{\pmb {\beta }}-\pmb {\beta }_{0}=(\tilde{Z}^{T}\tilde{Z})^{-1}\tilde{Z}^{T}(\tilde{W}+\tilde{\varepsilon }). \end{aligned}$$
(A.1)

Lemma A.1

Suppose that Assumptions 124 and 5 hold, then it holds that

$$\begin{aligned} \frac{1}{n}\tilde{Z}^{T}\tilde{Z}=\Omega +o_{p}(1). \end{aligned}$$

Proof

Let \(\tilde{Z}_{i}=(\tilde{Z}_{i1},\ldots ,\tilde{Z}_{id})^{T}\). Set \(\vec {\xi }_{li}=\sum _{j=1}^{m}\frac{\xi _{lj} \xi _{ij}}{\lambda _{j}}\), \(\vec {Z}_{ir1}=Z_{ir}-\frac{1}{n}\sum _{l=1}^{n}Z_{lr}\vec {\xi }_{li}\) and \(\vec {Z}_{ir2}=\frac{1}{n}\sum _{l=1}^{n}Z_{lr}(\tilde{\xi }_{li}-\vec {\xi }_{li}).\) Then \(\tilde{Z}_{ir}=\vec {Z}_{ir1}-\vec {Z}_{ir2}\) and

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\tilde{Z}_{ir}\tilde{Z}_{iq}= & {} \frac{1}{n}\sum _{i=1}^{n}(\vec {Z}_{ir1}\vec {Z}_{iq1}-\vec {Z}_{ir1}\vec {Z}_{iq2}-\vec {Z}_{ir2}\vec {Z}_{iq1}\nonumber \\&+\vec {Z}_{ir2}\vec {Z}_{iq2}), \quad r,q=1,\ldots ,d. \end{aligned}$$
(A.2)

Let \(\vec {Z}_{ir21}=\sum _{j=1}^{m}\frac{1}{\lambda _{j}} \left[ \frac{1}{n}\sum _{l=1}^{n}Z_{lr}(\hat{\xi }_{lj}-\xi _{lj})\right] \xi _{ij}\), \(\vec {Z}_{ir22}=\sum _{j=1}^{m}\left( \frac{1}{\hat{\lambda }_{j}} -\frac{1}{\lambda _{j}}\right) \left( \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\hat{\xi }_{lj}\right) \xi _{ij}\) and \(\vec {Z}_{ir23}=\sum _{j=1}^{m}\frac{1}{\hat{\lambda }_{j}} \left( \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\hat{\xi }_{lj}\right) (\hat{\xi }_{ij}-\xi _{ij}).\) We then have

$$\begin{aligned} |\vec {Z}_{ir2}\vec {Z}_{iq2}|\le \frac{3}{2}\left( \vec {Z}_{ir21}^{2}+\vec {Z}_{ir22}^{2}+\vec {Z}_{ir23}^{2}+\vec {Z}_{iq21}^{2}+\vec {Z}_{iq22}^{2}+\vec {Z}_{iq23}^{2}\right) . \end{aligned}$$
(A.3)

Lemma 5.1 of Hall and Horowitz (2007) implies that

$$\begin{aligned} \hat{\xi }_{lj}-\xi _{lj}= \sum _{k\ne j}\frac{\xi _{lk}}{\hat{\lambda }_{j}-\lambda _{k}}\int \Delta \hat{\phi }_{j}\phi _{k}+\xi _{lj}\int (\hat{\phi }_{j}-\phi _{j})\phi _{j}, \end{aligned}$$
(A.4)

where \(\Delta =\hat{K}-K\). We then obtain that

$$\begin{aligned} \left[ \frac{1}{n}\sum _{l=1}^{n}Z_{lr}(\hat{\xi }_{lj}-\xi _{lj})\right] ^{2}\le & {} 2\left( \sum _{k\ne j}\frac{\vec {\xi }_{rk}}{\hat{\lambda }_{j}-\lambda _{k}} \int \Delta \hat{\phi }_{j}\phi _{k}\right) ^{2} +2\left( \vec {\xi }_{rj}\int (\hat{\phi }_{j}-\phi _{j})\phi _{j}\right) ^{2} \\\le & {} 2\left[ \sum _{k\ne j}\frac{\vec {\xi }_{rk}^{2}}{\left( \hat{\lambda }_{j}-\lambda _{k}\right) ^{2}}\right] \left[ \sum _{k=1}^{\infty }\left( \int \Delta \hat{\phi }_{j}\phi _{k}\right) ^{2}\right] \\&+\,2\vec {\xi }_{rj}^{2}\left( \int (\hat{\phi }_{j}-\phi _{j})\phi _{j}\right) ^{2}, \end{aligned}$$

where \(\vec {\xi }_{rj}=\frac{1}{n}\sum _{l=1}^{n}Z_{lr}\xi _{lj}\). Lemma 1 of Cardot et al. (2007) implies that

$$\begin{aligned} |\lambda _{j}-\lambda _{k}|\ge \lambda _{j}-\lambda _{j+1}\ge \lambda _{m}-\lambda _{m+1}\ge \lambda _{m}/(m+1)\ge \lambda _{m}/(2m) \end{aligned}$$

uniformly for \(1\le j\le m\). By (5.2) of Hall and Horowitz (2007), it holds that \(\sup _{j\ge 1}|\hat{\lambda }_{j}-\lambda _{j}|\le |\Vert \Delta \Vert |=O_{p}(n^{-1/2})\) and

$$\begin{aligned} \begin{array}{ll} \left( \int (\hat{\phi }_{j}-\phi _{j})\phi _{j}\right) ^{2} \le \Vert \hat{\phi }_{j}-\phi _{j}\Vert ^{2}\le C\frac{|\Vert \Delta \Vert |^{2}}{(\lambda _{j}-\lambda _{j+1})^{2}}\le C|\Vert \Delta \Vert |^{2}\lambda _{j}^{-2}j^{2}, \end{array} \end{aligned}$$
(A.5)

where \(|\Vert \Delta \Vert |=(\int _{{\mathcal {T}}}\int _{{\mathcal {T}}}\Delta ^{2}(s,t)\mathrm{d}s\mathrm{d}t)^{1/2}\). Using Parseval’s identity, we get that

$$\begin{aligned} \sum _{k=1}^{\infty } \left( \int \Delta \hat{\phi }_{j}\phi _{k}\right) ^{2} =\int \left( \int \Delta \hat{\phi }_{j}\right) ^{2}\le |\Vert \Delta \Vert |^{2}=O_{p}(n^{-1}). \end{aligned}$$

Assumption 4 implies that \(|\hat{\lambda }_{j}-\lambda _{j}|=o_{p}(\lambda _{m}/m)\). Consequently, \(\sum _{k\ne j}\frac{\vec {\xi }_{rk}^{2}}{(\hat{\lambda }_{j}-\lambda _{k})^{2}}=\sum _{k\ne j}\frac{\vec {\xi }_{rk}^{2}}{(\lambda _{j}-\lambda _{k})^{2}}[1+o_{p}(1)]\), where \(o_{p}(1)\) holds uniformly for \(1\le j\le m\). By arguments similar to those used in the proof of Lemma 2 of Cardot et al. (2007) and use the fact that \((\lambda _{j}-\lambda _{k})^{2}\ge (\lambda _{k}-\lambda _{k+1})^{2}\), we deduce that

$$\begin{aligned} \sum _{k\ne j}\frac{1}{(\lambda _{j}-\lambda _{k})^{2}}E(\vec {\xi }_{rk}^{2})&\le C\sum _{k\ne j}\frac{1}{(\lambda _{j}-\lambda _{k})^{2}}\left( n^{-1}\lambda _{k}+g_{rk}^{2}\lambda _{k}^{2}\right) \\&\le C\left( n^{-1}\lambda _{j}^{-1}j^{2}\log j+1\right) . \end{aligned}$$

Lemma 1 of Cardot et al. (2007) yields that

$$\begin{aligned} \sum _{j=1}^{m}\lambda _{j}^{-2}j^{2}\log j\le m^{-2}\lambda _{m}^{-2}\sum _{j=1}^{m}j^{4}\log j\le \lambda _{m}^{-2}m^{3}\log m \end{aligned}$$

and \(\sum _{j=1}^{m}\lambda _{j}^{-1}\le \lambda _{m}^{-1}m\). Therefore,

$$\begin{aligned} \begin{array}{ll} \sum _{j=1}^{m}\frac{1}{\lambda _{j}} \left[ \frac{1}{n}\sum _{l=1}^{n}Z_{lr}(\hat{\xi }_{lj}-\xi _{lj})\right] ^{2} =O_{p}\left( n^{-2}\lambda _{m}^{-2}m^{3}\log m +n^{-1}\lambda _{m}^{-1}m\right) \end{array}\nonumber \\ \end{aligned}$$
(A.6)

and

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\vec {Z}_{ir21}^{2}\le & {} \left( \sum _{j=1}^{m}\frac{1}{\lambda _{j}} \left[ \frac{1}{n}\sum _{l=1}^{n}Z_{lr}(\hat{\xi }_{lj}-\xi _{lj})\right] ^{2}\right) \left( \sum _{j=1}^{m}\frac{1}{n\lambda _{j}}\sum _{i=1}^{n}\xi _{ij}^{2}\right) \nonumber \\= & {} O_{p}\left( n^{-2}\lambda _{m}^{-2}m^{4}\log m +n^{-1}\lambda _{m}^{-1}m^{2}\right) . \end{aligned}$$
(A.7)

Decomposing \(\frac{1}{n}\sum _{l=1}^{n}Z_{lr}\hat{\xi }_{lj}=\vec {\xi }_{rj}+\frac{1}{n}\sum _{l=1}^{n}Z_{lr}(\hat{\xi }_{lj} -\xi _{lj})\) and using (A.6), we get

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\vec {Z}_{ir22}^{2}\le & {} C\sum _{j=1}^{m} \frac{(\hat{\lambda }_{j}-\lambda _{j})^{2}}{\lambda _{j}^{3}} \left( \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\hat{\xi }_{lj}\right) ^{2} [1+o_{p}(1)] \left( \sum _{j=1}^{m}\frac{1}{n\lambda _{j}}\sum _{i=1}^{n}\xi _{ij}^{2}\right) \nonumber \\= & {} O_{p}\left( n^{-1}\lambda _{m}^{-1}m+n^{-3}\lambda _{m}^{-4}m^{4}\log m +n^{-2}\lambda _{m}^{-3}m^{2}\right) . \end{aligned}$$
(A.8)

By (A.10) of Tang (2015), it holds that

$$\begin{aligned} n\Vert \hat{\phi }_{j}-\phi _{j}\Vert ^{2}/(j^{2}\log j)=O_{p}(1), \end{aligned}$$
(A.9)

where \(O_{p}(\cdot )\) holds uniformly for \(1\le j\le m\). Using (A.8) and (A.9), we obtain

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\vec {Z}_{ir23}^{2}\le & {} \left( \sum _{j=1}^{m}\frac{1}{\hat{\lambda }^{2}} \left( \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\hat{\xi }_{lj}\right) ^{2}\right) \left( \frac{1}{n}\sum _{i=1}^{n}\Vert X_{i}\Vert ^{2}\right) \left( \sum _{j=1}^{m}\Vert \hat{\phi }_{j}-\phi _{j}\Vert ^{2}\right) \nonumber \\= & {} O_{p}\left( \left( n^{-2}\lambda _{m}^{-1}m^{4}+n^{-1}m^{3}+n^{-3}\lambda _{m}^{-3}m^{6}\log m +n^{-2}\lambda _{m}^{-2}m^{4}\right) \log m\right) .\nonumber \\ \end{aligned}$$
(A.10)

Hence, by (A.3), (A.7), (A.8), and (A.10) and Assumption 4, we conclude that

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}|\vec {Z}_{ir2}\vec {Z}_{iq2}|=O_{p}\left( n^{-2} \lambda _{m}^{-2}m^{4}\log m +n^{-1}\lambda _{m}^{-1}m^{2}\right) =o_{p}(1). \end{aligned}$$
(A.11)

Define \(\check{\xi }_{jr}=\frac{1}{n}\sum _{l=1}^{n}\lambda _{j}^{-1/2}\xi _{lj}Z_{lr}\). Since \(E[\max _{1\le j\le m}(\check{\xi }_{jr}-E(\check{\xi }_{jr}))^{2}]\le \frac{1}{n}\sum _{j=1}^{m}\lambda _{j}^{-1}E(\xi _{j}Z_{r})^{2}\le Cn^{-1}\), we then have \(\max _{1\le j\le m}|\check{\xi }_{jr}-E(\check{\xi }_{jr})|=O_{p}(n^{-1/2})\). Hence

$$\begin{aligned}&\frac{1}{n}\sum _{i=1}^{n}\vec {Z}_{ir1}\vec {Z}_{iq1}\nonumber \\&\quad =\frac{1}{n}\sum _{i=1}^{n}Z_{ir}Z_{iq} -2\sum _{j=1}^{m}\check{\xi }_{jr}\check{\xi }_{jq}+ \sum _{j=1}^{m}\frac{\check{\xi }_{jr}\check{\xi }_{jq}}{n\lambda _{j}}\left( \sum _{i=1}^{n}\xi _{ij}^{2}\right) +\sum _{j\ne j'}\check{\xi }_{jr}\check{\xi }_{j'q}\bar{\xi }_{jj'} \nonumber \\&\quad =\sum _{j=1}^{\infty }g_{rj}g_{qj}\lambda _{j} +E(H_{r}H_{q})-2\sum _{j=1}^{m}g_{rj}g_{qj}\lambda _{j} +\sum _{j=1}^{m}g_{rj}g_{qj}\lambda _{j}+o_{p}(1) \nonumber \\&\quad =E(H_{r}H_{q})+o_{p}(1), \end{aligned}$$
(A.12)

where \(\bar{\xi }_{jj'}=\frac{1}{n(\lambda _{j}\lambda _{j'})^{1/2}}\sum _{i=1}^{n}\xi _{ij}\xi _{ij'}\). Now Lemma A.1 follows from (A.2), (A.11), (A.12) and the fact that \(\frac{1}{n}|\sum _{i=1}^{n}\vec {Z}_{ir1}\vec {Z}_{iq2}| \le \left( \frac{1}{n}\sum _{i=1}^{n}\vec {Z}_{ir1}^{2}\right) ^{1/2} \left( \frac{1}{n}\sum _{i=1}^{n}\vec {Z}_{iq2}^{2}\right) ^{1/2}\). \(\square \)

Lemma A.2

Under Assumptions 14, it holds that

$$\begin{aligned} \sum _{j=1}^{m}\lambda _{j} \left[ \gamma _{j}-\frac{1}{\hat{\lambda }_{j}} \left( \frac{1}{n}\sum _{l=1}^{n}W_{l}\hat{\xi }_{lj}\right) \right] ^{2} =O_{p}\left( n^{-1}\lambda _{m}^{-1}m\right) . \end{aligned}$$

Proof

Set \(S_{1}=\sum _{j=1}^{m}\lambda _{j}\left[ \gamma _{j}-\frac{1}{\lambda _{j}} \left( \frac{1}{n}\sum _{l=1}^{n}W_{l}\xi _{lj}\right) \right] ^{2}\), \(S_{2}=\sum _{j=1}^{m}\frac{1}{\lambda _{j}} \left[ \frac{1}{n}\sum _{l=1}^{n}W_{l}(\hat{\xi }_{lj}-\xi _{lj})\right] ^{2}\) and \(S_{3}=\sum _{j=1}^{m}\lambda _{j} \left( \frac{1}{\hat{\lambda }_{j}}-\frac{1}{\lambda _{j}}\right) ^{2} \left( \frac{1}{n}\sum _{l=1}^{n}W_{l}\hat{\xi }_{lj}\right) ^{2}\). We have

$$\begin{aligned} \sum _{j=1}^{m}\lambda _{j} \left[ \gamma _{j}-\frac{1}{\hat{\lambda }_{j}} \left( \frac{1}{n}\sum _{l=1}^{n}W_{l}\hat{\xi }_{lj}\right) \right] ^{2}\le 3(S_{1}+S_{2}+S_{3}). \end{aligned}$$
(A.13)

Since \(E\left[ \gamma _{j}-\frac{1}{\lambda _{j}}\left( \frac{1}{n}\sum _{l=1}^{n}W_{l}\xi _{lj}\right) \right] =0\), then by Assumptions 13, we obtain that

$$\begin{aligned} E(S_{1})=\sum _{j=1}^{m}\frac{1}{\lambda _{j}} Var\left( \frac{1}{n}\sum _{l=1}^{n}W_{l}\xi _{lj}\right) \le \sum _{j=1}^{m}\frac{1}{n^{2}\lambda _{j}}\sum _{l=1}^{n} E\left( W_{l}^{2}\xi _{lj}^{2}\right) \le Cm/n.\nonumber \\ \end{aligned}$$
(A.14)

Similar to the proof of (A.6) and (A.8) and using Assumption 4, we deduce that

$$\begin{aligned} S_{2}=O_{p}\left( n^{-2}\lambda _{m}^{-2}m^{3}\log m +n^{-1}\lambda _{m}^{-1}m\right) =O_{p}(n^{-1}\lambda _{m}^{-1}m) \end{aligned}$$
(A.15)

and

$$\begin{aligned} S_{3}\le & {} C\sum _{j=1}^{m}\frac{(\hat{\lambda }_{j}-\lambda _{j})^{2}}{\lambda _{j}^{3}}\left( \bar{\zeta }_{j}^{2} +\left[ \frac{1}{n}\sum _{l=1}^{n}\zeta _{l}(\hat{\xi }_{lj}-\xi _{lj})\right] ^{2}\right) [1+o_{p}(1)] \nonumber \\= & {} O_{p}\left( n^{-1}\lambda _{m}^{-1}+n^{-3}\lambda _{m}^{-4}m^{3}\log m +n^{-2}\lambda _{m}^{-3}m)=O_{p}(n^{-1}\lambda _{m}^{-1}\right) .\qquad \end{aligned}$$
(A.16)

Now Lemma A.2 follows from (A.13)–(A.16). \(\square \)

Lemma A.3

Under Assumptions 124 and 5, it holds that

$$\begin{aligned} \sum _{j=1}^{m}\lambda _{j}^{-1} \left( \sum _{i=1}^{n}\xi _{ij}\tilde{Z}_{ir}\right) ^{2} =O_{p}(nm+\lambda _{m}^{-2}m^{4}\log m). \end{aligned}$$

Proof

Let \(Z_{ir}^{*}=Z_{ir}-\sum _{j'=1}^{m}\frac{1}{\lambda _{j'}} \left( \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\xi _{lj'}\right) \xi _{ij'}\). Observe that

$$\begin{aligned} \left( \sum _{i=1}^{n}\xi _{ij}\tilde{Z}_{ir}\right) ^{2}\le & {} 4\left( \sum _{i=1}^{n}\xi _{ij}Z_{ir}^{*}\right) ^{2} \nonumber \\&+\,4\left( \sum _{i=1}^{n}\xi _{ij}\sum _{j'=1}^{m}\frac{1}{\lambda _{j'}} \left[ \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\left( \hat{\xi }_{lj'}-\xi _{lj'}\right) \right] \xi _{ij'}\right) ^{2} \nonumber \\&+\, 4\left( \sum _{i=1}^{n}\xi _{ij}\sum _{j'=1}^{m} \left( \frac{1}{\hat{\lambda }_{j'}}-\frac{1}{\lambda _{j'}}\right) \left[ \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\hat{\xi }_{lj'}\right] \xi _{ij'}\right) ^{2} \nonumber \\&+\,4\left( \sum _{i=1}^{n}\xi _{ij}\sum _{j'=1}^{m} \frac{1}{\hat{\lambda }_{j'}} \left[ \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\hat{\xi }_{lj'}\right] (\hat{\xi }_{ij'}-\xi _{ij'})\right) ^{2} \nonumber \\=: & {} 4(T_{j1}+T_{j2}+T_{j3}+T_{j4}). \end{aligned}$$
(A.17)

By direct computation and using Assumption 1, we get

$$\begin{aligned} E\left( \xi _{ij}^{2}{Z_{ir}^{*}}^{2}\right)\le & {} 2E\left( \xi _{ij}^{2}Z_{ir}^{2}\right) +2E \left[ \xi _{ij}^{2}\left( \sum _{j'=1}^{m}\frac{1}{\lambda _{j'}} \left( \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\xi _{lj'}\right) \xi _{ij'}\right) ^{2}\right] \\\le & {} C\left( \lambda _{j}+m\lambda _{j}/n^{2} +(n-1)m\lambda _{j}/n^{2}+m^{2}\lambda _{j}/n^{2}\right) \le C\lambda _{j} \end{aligned}$$

and

$$\begin{aligned} \left| \sum _{i_{1}\ne i_{2}}E\left( \xi _{i_{1}j}\xi _{i_{2}j}{Z_{i_{1}r}^{*}}{Z_{i_{2}r}^{*}}\right) \right| \le C[(n-1)(n+2)\lambda _{j}/n+(n-1)m\lambda _{j}/n]\le Cn\lambda _{j}. \end{aligned}$$

Hence

$$\begin{aligned} E(T_{j1})=\sum _{i=1}^{n}E\left( \xi _{ij}^{2}{Z_{ir}^{*}}^{2}\right) +\sum _{i_{1}\ne i_{2}}E\left( \xi _{i_{1}j}\xi _{i_{2}j}{Z_{i_{1}r}^{*}}{Z_{i_{2}r}^{*}}\right) \le Cn\lambda _{j}. \end{aligned}$$
(A.18)

Since \(\sum _{j'=1}^{m}\frac{1}{\lambda _{j'}}E\left( \sum _{i=1}^{n}\xi _{ij}\xi _{ij'}\right) ^{2}\le Cn^{2}\lambda _{j}\), then by (A.6), we have

$$\begin{aligned} \sum _{j=1}^{m}\lambda _{j}^{-1}T_{j2}\le & {} \left( \sum _{j'=1}^{m}\frac{1}{\lambda _{j'}}\left[ \frac{1}{n}\sum _{l=1}^{n}Z_{lr}(\hat{\xi }_{lj'}- \xi _{lj'})\right] ^{2}\right) \nonumber \\&\times \left( \sum _{j=1}^{m}\lambda _{j}^{-1}\sum _{j'=1}^{m}\frac{1}{\lambda _{j'}}\left( \sum _{i=1}^{n}\xi _{ij}\xi _{ij'}\right) ^{2}\right) \nonumber \\= & {} O_{p}(n^{-2}\lambda _{m}^{-2}m^{3}\log m)O_{p}(n^{2}m)=O_{p}(\lambda _{m}^{-2}m^{4}\log m).\qquad \end{aligned}$$
(A.19)

Similar to the proof (A.8) and using Assumption 4, we deduce that

$$\begin{aligned} \sum _{j=1}^{m}\lambda _{j}^{-1}T_{j3}\le & {} \left( \sum _{j'=1}^{m}\lambda _{j'} \left( \frac{1}{\hat{\lambda }_{j'}}-\frac{1}{\lambda _{j'}}\right) ^{2} \left[ \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\hat{\xi }_{lj'}\right] ^{2}\right) \nonumber \\&\times \left( \sum _{j=1}^{m}\lambda _{j}^{-1}\sum _{j'=1}^{m} \frac{1}{\lambda _{j'}}\left( \sum _{i=1}^{n}\xi _{ij}\xi _{ij'}\right) ^{2}\right) \nonumber \\= & {} O_{p}\left( \lambda _{m}^{-2}m^{2}+n^{-1}\lambda _{m}^{-4}m^{4}\log m\right) =o_{p}\left( \lambda _{m}^{-2}m^{2}\log m\right) .\qquad \end{aligned}$$
(A.20)

and

$$\begin{aligned} \sum _{j=1}^{m}\lambda _{j}^{-1}T_{j4}\le & {} \left( \sum _{j'=1}^{m}\frac{1}{\lambda _{j'}^{2}} \left[ \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\hat{\xi }_{lj'}\right] ^{2}\right) [1+o_{p}(1)] \nonumber \\&\quad \times \left( \sum _{j=1}^{m}\frac{1}{\lambda _{j}} \sum _{i=1}^{n}\xi _{ij}^{2}\right) \left( \sum _{j'=1}^{m}\sum _{i=1}^{n}(\hat{\xi }_{ij'}-\xi _{ij'})^{2}\right) \nonumber \\= & {} O_{p}\left( n^{-1}\lambda _{m}^{-1}m^{5}\log m+n^{-2}\lambda _{m}^{-3}m^{7}(\log m)^{2}\right) =o_{p}\left( \lambda _{m}^{-2}m^{4}\log m\right) .\nonumber \\ \end{aligned}$$
(A.21)

Now Lemma A.3 follows from (A.17)–(A.21) and Assumption 4. \(\square \)

Lemma A.4

Under Assumptions 15, it holds that

$$\begin{aligned} n^{-1/2}\left| \sum _{j=1}^{m}\frac{1}{\hat{\lambda }_{j}} \left( \frac{1}{n}\sum _{l=1}^{n}W_{l}\hat{\xi }_{lj}\right) \sum _{i=1}^{n}(\hat{\xi }_{ij}-\xi _{ij})\tilde{Z}_{ir}\right| =o_{p}(1). \end{aligned}$$

Proof

Let \(\breve{W}_{j}=\frac{1}{n}\sum _{l=1}^{n}W_{l}\hat{\xi }_{lj}\). Applying the Cauchy–Schwarz inequality, we get

$$\begin{aligned} \left( \sum _{j=1}^{m}\frac{1}{\hat{\lambda }_{j}}\breve{W}_{j}\sum _{i=1}^{n}(\hat{\xi }_{ij}-\xi _{ij})\tilde{Z}_{ir}\right) ^{2}\le \left( \sum _{j=1}^{m}\frac{1}{\hat{\lambda }_{j}^{2}}\breve{W}_{j}^{2}\right) \left( \sum _{j=1}^{m}\left( \sum _{i=1}^{n}(\hat{\xi }_{ij}-\xi _{ij}) \tilde{Z}_{ir}\right) ^{2}\right) . \end{aligned}$$

Using (A.4), (A.5), Assumption 4 and Parseval’s identity and the arguments similar to those used to prove Lemma A.3, we deduce that

$$\begin{aligned}&\sum _{j=1}^{m} \left( \sum _{i=1}^{n}(\hat{\xi }_{ij}-\xi _{ij})\tilde{Z}_{ir}\right) ^{2} \\&\quad \le 2\sum _{j=1}^{m}\left[ \left( \sum _{k\ne j}(\hat{\lambda }_{j}-\lambda _{k})^{-1}\int \Delta \hat{\phi }_{j}\phi _{k} \sum _{i=1}^{n}\xi _{ik}\tilde{Z}_{ir}\right) ^{2}\right. \\&\qquad \left. +\left( \sum _{i=1}^{n}\xi _{ij}\tilde{Z}_{ir}\right) ^{2} \left( \int (\hat{\phi }_{j}-\phi _{j})\phi _{j}\right) ^{2}\right] \\&\le C|\Vert \Delta \Vert |^{2}\sum _{j=1}^{m}\left[ \sum _{k\ne j}\left( \hat{\lambda }_{j}-\lambda _{k}\right) ^{-2} \left( \sum _{i=1}^{n}\xi _{ik}\tilde{Z}_{ir}\right) ^{2} +\lambda _{j}^{-2}j^{2}\left( \sum _{i=1}^{n}\xi _{ij}\tilde{Z}_{ir}\right) ^{2}\right] \\&=O_{p} \left( \lambda _{m}^{-1}m^{3}\log m+n^{-1}\lambda _{m}^{-3}m^{6}\log m\right) =o_{p}(n). \end{aligned}$$

Let \(\vec {W}_{j}=\frac{1}{n}\sum _{l=1}^{n}W_{l}\xi _{lj}\). Decomposing \(\frac{1}{n}\sum _{l=1}^{n}W_{l}\hat{\xi }_{lj}=\vec {W}_{j}+\frac{1}{n}\sum _{l=1}^{n}W_{l}(\hat{\xi }_{lj} -\xi _{lj})\) and using arguments similar to those used in the proof of (A.6) and using Assumption 4 , we obtain that

$$\begin{aligned} \sum _{j=1}^{m}\frac{1}{\hat{\lambda }_{j}^{2}}\breve{W}_{j}^{2}=O_{p}(n^{-1}\lambda _{m}^{-1}m+1+n^{-2}\lambda _{m}^{-3}m^{3}\log m+n^{-1}\lambda _{m}^{-2}m)=O_{p}(1). \end{aligned}$$

This finishes the proof of Lemma A.4. \(\square \)

Lemma A.5

Under Assumptions 15, it holds that

$$\begin{aligned} n^{-1/2}\left| \sum _{i=1}^{n}\tilde{W}_{i}\tilde{Z}_{ir}\right| =o_{p}(1). \end{aligned}$$

Proof

Observe that

$$\begin{aligned} \sum _{i=1}^{n}\tilde{W}_{i}\tilde{Z}_{ir}= & {} \sum _{j=1}^{m}\left[ \gamma _{j}-\frac{1}{\hat{\lambda }_{j}} \left( \frac{1}{n}\sum _{l=1}^{n}W_{l}\hat{\xi }_{lj}\right) \right] \sum _{i=1}^{n}\xi _{ij}\tilde{Z}_{ir}\nonumber \\&-\sum _{j=1}^{m}\frac{1}{\hat{\lambda }_{j}} \left( \frac{1}{n}\sum _{l=1}^{n}W_{l}\hat{\xi }_{lj}\right) \sum _{i=1}^{n}\left( \hat{\xi }_{ij}-\xi _{ij}\right) \tilde{Z}_{ir}\nonumber \\&+\sum _{j=m+1}^{\infty }\gamma _{j} \sum _{i=1}^{n}\xi _{ij}\tilde{Z}_{ir} \end{aligned}$$
(A.22)

Lemmas A.2 and A.3 and Assumption 4 imply that

$$\begin{aligned}&n^{-\frac{1}{2}}\left| \sum _{j=1}^{m}\left[ \gamma _{j}-\frac{1}{\hat{\lambda }_{j}}\left( \frac{1}{n}\sum _{l=1}^{n}W_{l}\hat{\xi }_{lj}\right) \right] \sum _{i=1}^{n}\xi _{ij}\tilde{Z}_{ir}\right| \nonumber \\&\quad \le n^{-\frac{1}{2}}\left( \sum _{j=1}^{m}\lambda _{j}\left[ \gamma _{j}-\frac{1}{\hat{\lambda }_{j}} \left( \frac{1}{n}\sum _{l=1}^{n}W_{l}\hat{\xi }_{lj}\right) \right] ^{2}\right) ^{\frac{1}{2}} \left( \sum _{j=1}^{m}\lambda _{j}^{-1}(\sum _{i=1}^{n}\xi _{ij}\tilde{Z}_{ir})^{2}\right) ^{\frac{1}{2}} \nonumber \\&\quad =O_{p}\left( n^{-1/2}\lambda _{m}^{-1/2}m+n^{-1}\lambda _{m}^{-3/2}m^{5/2}(\log m)^{1/2}\right) =o_{p}(1). \end{aligned}$$
(A.23)

By arguments similar to those used in the proof of Lemma A.3, we obtain that

$$\begin{aligned}&\left( \sum _{j=m+1}^{\infty }\gamma _{j} \sum _{i=1}^{n}\xi _{ij}\tilde{Z}_{ir}\right) ^{2}\nonumber \\&\quad \le \left( \sum _{j=m+1}^{\infty }\gamma _{j}^{2}\right) \left( \sum _{j=m+1}^{\infty } \left( \sum _{i=1}^{n}\xi _{ij}\tilde{Z}_{ir}\right) ^{2}\right) \nonumber \\&\quad =O_{p}\left( nm^{-2\gamma +1}+\lambda _{m}^{-2}m^{-2\gamma +4}\log m\right) \sum _{j=m+1}^{\infty }\lambda _{j}\nonumber \\&\quad =o_{p}(n). \end{aligned}$$
(A.24)

Now Lemma A.5 follows from (A.22)–(A.24) and Lemma A.4. \(\square \)

Proof of Theorem 2.1

By arguments similar to those used to prove Lemmas A.4 and A.5, we deduce that \(n^{-1/2}\sum _{i=1}^{n}\left( \frac{1}{n}\sum _{l=1}^{n}\varepsilon _{l}\tilde{\xi }_{li}\right) \tilde{Z}_{ir}=o_{p}(1)\). Hence

$$\begin{aligned} n^{-\frac{1}{2}}\sum _{i=1}^{n}\tilde{Z}_{ir}\tilde{\varepsilon }_{i}=n^{-\frac{1}{2}}\sum _{i=1}^{n}\tilde{Z}_{ir}\varepsilon _{i}+o_{p}(1). \end{aligned}$$

We decompose \(\sum _{i=1}^{n}\tilde{Z}_{ir}\varepsilon _{i}\) into three terms as

$$\begin{aligned} \sum _{i=1}^{n}\tilde{Z}_{ir}\varepsilon _{i}= & {} \sum _{i=1}^{n}\varepsilon _{i}\left( Z_{ir}-\sum _{j=1}^{m}\frac{E(Z_{lr}\xi _{j})}{\lambda _{j}}\xi _{ij}\right) -\sum _{i=1}^{n}\varepsilon _{i}\sum _{j=1}^{m}\frac{\xi _{ij}}{\lambda _{j}}\nonumber \\&\left( \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\xi _{lj} -E(Z_{lr}\xi _{j})\right) -\sum _{i=1}^{n}\varepsilon _{i}\frac{1}{n}\sum _{l=1}^{n}Z_{lr}(\tilde{\xi }_{li}-\vec {\xi }_{li}). \end{aligned}$$

Similar to the proof of Lemma A.4, we have \(\sum _{i=1}^{n}\varepsilon _{i} \frac{1}{n}\sum _{l=1}^{n}Z_{lr}(\tilde{\xi }_{li}-\vec {\xi }_{li})=o_{p}(n)\). Since

$$\begin{aligned} \sum _{i=1}^{n}\varepsilon _{i}\left( Z_{ir}-\sum _{j=1}^{m}\frac{E(Z_{lr}\xi _{j} )}{\lambda _{j}}\xi _{ij}\right) =\sum _{i=1}^{n}\varepsilon _{i}H_{ir}+\sum _{i=1} ^{n}\varepsilon _{i}\sum _{j=m+1}^{\infty }g_{rj}\xi _{ij}, \end{aligned}$$

\(\sum _{i=1}^{n}\varepsilon _{i}\sum _{j=1}^{m}\frac{\xi _{ij}}{\lambda _{j} }\left( \frac{1}{n}\sum _{l=1}^{n}Z_{lr}\xi _{lj}-E(Z_{lr}\xi _{j})\right) =o_{p}(n)\) and \(\sum _{i=1}^{n}\varepsilon _{i}\sum _{j=m+1}^{\infty }g_{kj}\xi _{ij} =o_{p}(n)\), it follows that

$$\begin{aligned} n^{-\frac{1}{2}}\sum _{i=1}^{n}\tilde{Z}_{ir}\tilde{\varepsilon }_{i}=n^{-\frac{1}{2}}\sum _{i=1}^{n}H_{ir}\varepsilon _{i}+o_{p}(1). \end{aligned}$$
(A.25)

Now (2.9) follows from (A.1), Lemmas A.1 and A.5, (A.25) and the central limit theorem. The proof of Theorem 2.1 is finished. \(\square \)

Lemma A.6

Define \(\check{\gamma }_{j}=\frac{1}{\hat{\lambda }_{j} }E[(Y-Z^{T}\pmb {\beta }_{0})\xi _{j}]\). Under the assumptions of Theorem 3.2, it holds that

$$\begin{aligned} \sum _{j=1}^{m}(\hat{\gamma }_{j}-\check{\gamma }_{j})^{2} =O_{p}\left( n^{-1}m\lambda _{m}^{-1} +n^{-2}m\lambda _{m}^{-2}\sum _{j=1}^{m}\gamma _{j}^{2}\lambda _{j}^{-2}j^{3}\right) . \end{aligned}$$

Proof

Define \(I_{1}=\frac{1}{n}\sum _{i=1}^{n} (Y_{i}-Z_{i}^{T}\pmb {\beta }_{0})\xi _{ij} -\gamma _{j}\lambda _{j}\), \(I_{2}=\frac{1}{n}\sum _{i=1}^{n}(Y_{i}-Z_{i}^{T}\pmb {\beta }_{0})(\hat{\xi }_{ij}-\xi _{ij})\) and \(I_{3}=\frac{1}{n}\sum _{i=1}^{n}Z_{i}^{T}(\hat{\pmb {\beta }}-\pmb {\beta }_{0})\hat{\xi }_{ij}\). Noting that \(E[(Y-Z^{T}\pmb {\beta }_{0})\xi _{j}]=\gamma _{j}\lambda _{j}\), we have

$$\begin{aligned} \sum _{j=1}^{m}(\hat{\gamma }_{j}-\check{\gamma }_{j})^{2}\le 3\sum _{j=1} ^{m}\lambda _{j}^{-2}\left( I_{1}^{2}+I_{2}^{2}+I_{3}^{2}\right) [1+o_{p} (1)], \end{aligned}$$
(A.26)

where \(o_{p}(1)\) holds uniformly for \(j=1,\ldots ,m\). Since \(E(I_{1})=0\) and \(E(I_{1}^{2})\le \frac{1}{n}[\sum _{k=1}^{\infty }\gamma _{k} ^{2}E(\xi _{k}^{2}\xi _{j}^{2})+\sigma ^{2}\lambda _{j}]\le C\lambda _{j}/n\), we obtain that

$$\begin{aligned} \sum _{j=1}^{m}\lambda _{j}^{-2}I_{1}^{2}=O_{p}\left( n^{-1}\sum _{j=1} ^{m}\lambda _{j}^{-1}\right) =O_{p}(n^{-1}m\lambda _{m} ^{-1}). \end{aligned}$$
(A.27)

Let \(M(t)=E[(Y_{i}-Z_{i}^{T}\pmb {\beta }_{0})X_{i}(t)] =\sum _{k=1}^{\infty }\gamma _{k}\lambda _{k}\phi _{k}(t)\). Then

$$\begin{aligned} I_{2}^{2}\le & {} 2\int _{{\mathcal {T}}}\left( \frac{1}{n}\sum _{i=1}^{n}(Y_{i} -Z_{i}^{T}\pmb {\beta }_{0})X_{i}(t)-M(t)\right) ^{2} \mathrm{d}t\Vert \hat{\phi }_{j}-\phi _{j}\Vert ^{2}\\&+\,2\left( \int _{{\mathcal {T}}}M(t)(\hat{\phi }_{j}(t)-\phi _{j}(t))\mathrm{d}t\right) ^{2}. \end{aligned}$$

Applying Assumption 1, it holds that

$$\begin{aligned}&E\left( \int _{{\mathcal {T}}}\left( \frac{1}{n}\sum _{i=1}^{n}(Y_{i}-Z_{i}^{T}\pmb {\beta }_{0})X_{i}(t)-M(t)\right) ^{2} \mathrm{d}t\right) \\&\quad \le \frac{1}{n}\int _{{\mathcal {T}}}E[(Y_{i}-Z_{i}^{T}\pmb {\beta }_{0})^{2}X_{i}^{2}(t)]\mathrm{d}t=O(n^{-1}). \end{aligned}$$

From (A.9), we obtain \(\sum _{j=1}^{m}\lambda _{j}^{-2}\Vert \hat{\phi }_{j}-\phi _{j}\Vert ^{2}=O_{p}(n^{-1}m^{3}\lambda _{m}^{-2} \log m)\). By arguments similar to those used in the proof of (5.15) of Hall and Horowitz (2007), it follows that

$$\begin{aligned}&\sum _{j=1}^{m}\lambda _{j}^{-2}\left( \int _{{\mathcal {T}}}M(t)(\hat{\phi }_{j}(t)-\phi _{j}(t))\mathrm{d}t\right) ^{2}\\&\quad =O_{p}\left( \frac{m}{n\lambda _{m} }+\frac{m}{n^{2}\lambda _{m}^{2}}\sum _{j=1}^{m} \gamma _{j}^{2}\lambda _{j}^{-2}j^{3}+\frac{m^{3}\log m}{n^{2} \lambda _{m}^{2}}\right) . \end{aligned}$$

Hence, using the assumption that \(n^{-1}m^{2}\lambda _{m} ^{-1}\log m\rightarrow 0\), we obtain

$$\begin{aligned} \sum _{j=1}^{m}\lambda _{j}^{-2}I_{2}^{2}=O_{p}\left( n^{-1}m \lambda _{m}^{-1}+n^{-2}m\lambda _{m}^{-2}\sum _{j=1}^{m}\gamma _{j}^{2}\lambda _{j}^{-2}j^{3}\right) . \end{aligned}$$
(A.28)

Using Theorem 3.1, it holds that

$$\begin{aligned} \sum _{j=1}^{m}\lambda _{j}^{-2}I_{3}^{2}\le & {} \left( \sum _{j=1} ^{m}\frac{1}{n\lambda _{j}^{2}}\sum _{i=1}^{n}\hat{\xi }_{ij} ^{2}\right) \left( \frac{1}{n}\sum _{i=1}^{n}[Z_{i}^{T}(\hat{\pmb {\beta }}-\pmb {\beta }_{0})]^{2}\right) \nonumber \\= & {} O_{p}\left( m\lambda _{m}^{-1}+n^{-1}m^{3}\lambda _{m}^{-2}\log m\right) O_{p}(n^{-1})=O_{p}\left( n^{-1}m\lambda _{m}^{-1}\right) .\nonumber \\ \end{aligned}$$
(A.29)

Now Lemma A.6 follows from combining (A.26)–(A.29). \(\square \)

Proof of Theorem 2.2

Note that

$$\begin{aligned} \int _{{\mathcal {T}}}[\hat{\gamma }(t)-\gamma (t)]^{2}\mathrm{d}t\le & {} C\left( \sum _{j=1}^{m}(\hat{\gamma }_{j}-\check{\gamma }_{j})^{2}\right. \nonumber \\&\left. +\sum _{j=1}^{m}(\check{\gamma }_{j}-\gamma _{j})^{2} +m\sum _{j=1}^{m}\gamma _{j}^{2}\Vert \hat{\phi }_{j}-\phi _{j}\Vert ^{2} +\sum _{j=m+1}^{\infty }\gamma _{j}^{2}\right) \nonumber \\ \end{aligned}$$
(A.30)

and

$$\begin{aligned} \sum _{j=1}^{m}(\check{\gamma }_{j}-\gamma _{j})^{2} =\sum _{j=1}^{m}\frac{(\hat{\lambda }_{j}-\lambda _{j})^{2}}{\lambda _{j}^{2}}\gamma _{j}^{2}[1+o_{p}(1)] =O_{p}\left( n^{-1}\lambda _{m}^{-1}\sum _{j=1}^{m}\gamma _{j}^{2}\lambda _{j}^{-1}\right) .\nonumber \\ \end{aligned}$$
(A.31)

Assumption 3 implies that \(m\sum _{j=1}^{m}\gamma _{j}^{2}\Vert \hat{\phi }_{j}-\phi _{j}\Vert ^{2}=O_{p}(mn^{-1}\sum _{j=1}^{m}\gamma _{j}^{2}j^{2}\log j)=o_{p}(m/n)\) and \(\sum _{j=m+1}^{\infty }\gamma _{j}^{2}=O(m^{-2\gamma +1})\). Now (2.10) follows from Lemma A.6, (A.30) and (A.31). The proof of Theorem 2.2 is finished. \(\square \)

Proof of Theorem 2.3

Observe that

$$\begin{aligned} \begin{array} [c]{l} \text{ MSPE }\le 2\{\Vert \hat{\gamma }-\gamma \Vert _{K}^{2}+(\hat{\pmb {\beta }} -\pmb {\beta }_{0})^{T}E(ZZ^{T})(\hat{\pmb {\beta }}-\pmb {\beta }_{0})\}, \end{array} \end{aligned}$$
(A.32)

where \(\Vert \hat{\gamma }-\gamma \Vert _{K}^{2}=\int _{{\mathcal {T}}}\int _{{\mathcal {T}} }K(s,t)[\hat{\gamma }(s)-\gamma (s)][\hat{\gamma }(t)-\gamma (t)]\mathrm{d}s\mathrm{d}t\). Under the assumptions of Theorem 2.3, using arguments similar to those used in the proof of Theorem 2 of Tang (2015), we deduce that \(\Vert \hat{\gamma }-\gamma \Vert _{K}^{2}=O_{p}(n^{-(\tau +2\delta -1)/(\tau +2\delta )})\). Now (2.12) follows from (A.32) and Theorem 2.1. The proof of Theorem 2.3 is finished. \(\square \)

Lemma A.7

Under the assumptions of Theorem 3.1, there exists a local minimizer \(\hat{\pmb {\beta }}\) of (3.1) such that \(\Vert \hat{ \pmb {\beta }}-\pmb {\beta }_{0}\Vert =O_{p}(n^{-1/2})\).

Proof

Let

$$\begin{aligned} P_{n}(\pmb {\beta })=n\sum _{k=1}^{d}p_{\nu _{n}}^{\prime }\left( \left| \beta _{k}^{(0)} \right| \right) |\beta _{k}|, \quad P_{n1}(\pmb {\beta })=n\sum _{k=1}^{d_{1}}p_{\nu _{n}}^{\prime }\left( \left| \beta _{k}^{(0)} \right| \right) |\beta _{k}| \end{aligned}$$

and \(D_{n}(\pmb {\beta })=(\tilde{Y}-\tilde{Z}\pmb {\beta })^{T}(\tilde{Y}-\tilde{Z}\pmb {\beta })+P_{n}(\pmb {\beta })\). It suffices to prove that for any given \(\varepsilon >0\), there exists a constant C such that

$$\begin{aligned} P\left\{ \sup _{\Vert u\Vert =C}D_{n}(\pmb {\beta }_{0}+n^{-1/2}u)>D_{n}(\pmb {\beta }_{0})\right\} \ge 1-\varepsilon . \end{aligned}$$
(A.33)

Note that

$$\begin{aligned} D_{n}(\pmb {\beta }_{0}+n^{-1/2}u)-D_{n}(\pmb {\beta }_{0})\ge & {} -2n^{-1/2}(\tilde{Y}-\tilde{Z}\pmb {\beta }_{0})^{T}\tilde{Z}u+n^{-1}u^{T}\tilde{Z}^{T}\tilde{Z}u \nonumber \\&+\,\left[ P_{n1}\left( \pmb {\beta }_{01}+n^{-1/2}u_{1}\right) -P_{n1}(\pmb {\beta }_{01})\right] \qquad \qquad \end{aligned}$$
(A.34)

and

$$\begin{aligned} (\tilde{Y}-\tilde{Z}\pmb {\beta }_{0})^{T}\tilde{Z}=(\tilde{W}+\tilde{\varepsilon })^{T}\tilde{Z}. \end{aligned}$$

By Lemma A.5, we have that \(n^{-1/2}\tilde{W}^{T}\tilde{Z}=o_{p}(1)\). By (A.25), it follows that \(n^{-1/2}\tilde{\varepsilon }^{T}\tilde{Z}=O_{p}(1)\). By Theorem 2.1, it holds that \(\pmb {\beta }^{(0)}\rightarrow _{P}\pmb {\beta }_{0}\), and we then have \(P\{P_{n1}( \pmb {\beta }_{01}+n^{-1/2}u_{1})-P_{n1}(\pmb {\beta }_{01})=0\}\rightarrow 1\) as \(n\rightarrow \infty \). Hence, for sufficiently large C, (A.33) follows from (A.34) and Lemma A.1 and the fact that \(\Omega \) is positive definite. The proof of Lemma A.7 is complete. \(\square \)

Proof of Theorem 3.1

We first prove that for any \(\pmb {\beta }=(\pmb {\beta }_{1}^{T},\pmb {\beta }_{2}^{T})^{T}\) in the neighborhood \( \Vert \pmb {\beta }-\pmb {\beta }_{0}\Vert =O(n^{-1/2})\) for sufficiently large n and \(\pmb {\beta } _{2}\ne \pmb {0}\), with probability tending to 1, we have

$$\begin{aligned} D_{n}((\pmb {\beta }_{1},\pmb {\beta }_{2}))>D_{n}((\pmb {\beta }_{1},\pmb {0})). \end{aligned}$$
(A.35)

Observe that

$$\begin{aligned} D_{n}\left( \left( \pmb {\beta }_{1},\pmb {\beta }_{2}\right) \right) -D_{n}\left( \left( \pmb {\beta }_{1},\pmb {0}\right) \right)= & {} -2\left( \tilde{W}-\tilde{Z}\left( \left( \pmb {\beta }_{1}-\pmb {\beta }_{01}\right) ^{T},\pmb {0}^{T}\right) ^{T}+\tilde{\varepsilon }\right) ^{T}\tilde{Z}\left( \pmb {0}^{T},\pmb {\beta }_{2}^{T}\right) ^{T} \\&+\left( \pmb {0}^{T},\pmb {\beta }_{2}^{T}\right) \tilde{Z}^{T}\tilde{Z}\left( \pmb {0}^{T},\pmb {\beta }_{2}^{T}\right) ^{T} +n\sum _{k=d_{1}}^{d}p_{\nu _{n}}^{\prime }\left( \left| \beta _{k}^{(0)} \right| \right) |\beta _{k}| \end{aligned}$$

By Lemma A.5, we have that \(n^{-1/2}\tilde{W}^{T}\tilde{Z}=o_{p}(1)\). By (A.25), it follows that \(n^{-1/2}\tilde{\varepsilon }^{T}\tilde{Z}=O_{p}(1)\). Hence, using Lemma A.1 and the fact that \(\Vert \pmb {\beta }_{2}\Vert =O(n^{-1/2})\) and \( n^{1/2}\nu _{n}\rightarrow +\,\infty \) and the result of Theorem 2.1, we deduce that with probability tending to 1, it holds that

$$\begin{aligned}&D_{n}\left( \left( \pmb {\beta }_{1},\pmb {\beta }_{2}\right) \right) -D_{n}\left( \left( \pmb {\beta }_{1},\pmb {0}\right) \right) \\&\quad =O_{p}\left( n^{1/2}\right) \sum _{k=d_{1}}^{d}|\beta _{k}|+n\sum _{k=d_{1}}^{d}p_{\nu _{n}}^{\prime }\left( \left| \beta _{k}^{\left( 0\right) } \right| \right) |\beta _{k}| \\&\quad =n\nu _{n}\sum _{k=d_{1}}^{d}\left[ O_{p}\left( \left( n^{1/2} \nu _{n}\right) ^{-1}\right) +\nu _{n}^{-1}p_{\nu _{n}}^{ \prime }\left( \left| \beta ^{\left( 0\right) }_{k}\right| \right) \right] |\beta _{k}|>0. \end{aligned}$$

By Lemma A.7 and (A.35), there exists a \( \sqrt{n}\)-consistent local minimizer \(\check{\pmb {\beta }}=(\check{ \pmb {\beta }}_{1},\pmb {0}^{T})^{T}\) of (3.1). Note that

$$\begin{aligned} D_{n}((\hat{\pmb {\beta }}_{\mathrm{PLS}1},\hat{\pmb {\beta }}_{\mathrm{PLS}2}))= & {} D_{n}((\check{\pmb {\beta }}_{1},\pmb {0}))-2\sqrt{n}\left[ n^{-1/2}(\tilde{Y}-\tilde{Z}\check{\pmb {\beta }})^{T}\tilde{Z}(\hat{\pmb {\theta }}_\mathrm{PLS}-\check{ \pmb {\beta }}) \right. \nonumber \\&+\,n^{-1/2}(\hat{\pmb {\theta }}_\mathrm{PLS}-\check{\pmb {\beta }})^{T}\tilde{Z}^{T}\tilde{Z}(\hat{\pmb {\theta }}_\mathrm{PLS}-\check{ \pmb {\beta }})\nonumber \\&\left. +\,\sqrt{n}\sum _{k=d_{1}+1}^{d}p_{\nu _{n}}^{\prime }\left( \left| \beta _{k}^{(0)}\right| \right) |\hat{\beta }_{PLSk}|\right] , \end{aligned}$$
(A.36)

where \(\hat{\pmb {\beta }}_\mathrm{PLS}=(\hat{\beta }_{\mathrm{PLS}1},\ldots ,\hat{\beta }_{PLSd})^{T}\). Write \(\tilde{Z}=(\tilde{\pmb {Z}}_{1},\tilde{\pmb {Z}}_{2})\). Since \(\hat{\pmb {\beta }}_\mathrm{PLS}\) is a minimizers of (3.1) and \(\check{\pmb {\beta }}\) is a local minimizer of (3.1), we then have that

$$\begin{aligned} (\tilde{Y}-\tilde{Z}\check{\pmb {\beta }})^{T}\tilde{Z}(\hat{\pmb {\theta }}_\mathrm{PLS}-\check{ \pmb {\beta }})=(\tilde{W}+\tilde{\varepsilon })^{T}\tilde{\pmb {Z}}_{2}\hat{\pmb {\theta }}_{\mathrm{PLS}2}+(\pmb {\beta }_{0}-\check{\pmb {\beta }})\tilde{Z}^{T}\tilde{\pmb {Z}}_{2}\hat{\pmb {\theta }}_{\mathrm{PLS}2}. \end{aligned}$$
(A.37)

By Lemma A.5, we have that \(n^{-1/2}\tilde{W}^{T}\tilde{\pmb {Z}}_{2}=o_{p}(1)\). By (A.25), it follows that \(n^{-1/2}\tilde{\varepsilon }^{T}\tilde{\pmb {Z}}_{2}=O_{p}(1)\). The fact that \(\pmb {\beta }_{0}-\check{\pmb {\beta }}=O_{p}(n^{-1/2})\) and Lemma A.1 imply that \(n^{-1/2}(\pmb {\beta }_{0}-\check{\pmb {\beta }})\tilde{Z}^{T}\tilde{\pmb {Z}}_{2}=O_{p}(1)\). If \(\hat{\pmb {\beta }}_\mathrm{PLS}\ne \check{ \pmb {\beta }}\), under the assumptions of Theorem 3.1, then by (A.36) and (A.37), we have \(D_{n}((\hat{\pmb {\beta }}_{\mathrm{PLS}1},\hat{\pmb {\beta }}_{\mathrm{PLS}2}))> D_{n}((\check{\pmb {\beta }}_{1},\pmb {0}))\). This is a contradiction to the fact that \(\hat{\pmb {\beta }}_\mathrm{PLS}\) is a minimizer of (3.1). So \(\hat{\pmb {\beta }}_{\mathrm{PLS}2}=0\) and \(\hat{\pmb {\beta }}_{\mathrm{PLS}1}=\check{\pmb {\beta }}_{1}\).

We now prove asymptotic normality part. Consider \(D_{n}((\pmb {\beta }_{1}, \pmb {0}))\) as a function of \(\pmb {\beta }_{1}\). Noting that with probability tending 1, \(\hat{\pmb {\beta }}_{\mathrm{PLS}1}\) is the \(\sqrt{n}\)-consistent minimizer of \(D_{n}((\pmb {\beta }_{1},\pmb {0}))\) and satisfies

$$\begin{aligned} \frac{\partial D_{n}((\pmb {\beta }_{1},\pmb {0}))}{\partial \pmb {\beta }_{1}} \left| _{\pmb {\beta }_{1}=\hat{\pmb {\beta }}_{\mathrm{PLS}1}}=-2\tilde{\pmb {Z}}_{1}^{T}(\tilde{Y}-\tilde{Z}\hat{\pmb {\beta }}_\mathrm{PLS})=0 \right. \end{aligned}$$

Hence

$$\begin{aligned} \hat{\pmb {\beta }}_{\mathrm{PLS}1}-\pmb {\beta }_{01}= \left( \tilde{\pmb {Z}}_{1}^{T}\tilde{\pmb {Z}}_{1}\right) ^{-1}\tilde{\pmb {Z}}_{1}^{T}\tilde{Y}. \end{aligned}$$

By arguments similar to those used in the proof of (2.9), we can prove (3.2). The proof of Theorem 3.1 is finished. \(\square \)

Proof of Theorem 3.2

Similar to the proofs of Theorems 2.2 and 2.3, we can complete the proof of Theorem 3.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Jin, P. Estimation and variable selection for partial functional linear regression. AStA Adv Stat Anal 103, 475–501 (2019). https://doi.org/10.1007/s10182-018-00342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-018-00342-0

Keywords

Navigation